
venuesvenuesvenues
A Networked Visual Instrument

“ Venues ”

James Tompkin
james.tompkin@gmail.com

26th April 2006

Abstract

Networked Visual Instrument is a project to create an audio instrument with a painterly,
play-evoking user interface, that allows for multi-user real-time collaboration. The software
created will be known as Venues.

During development, Venues matured from a simple instrument to a more featured
sequencer. Venues’ interface is built on-top of Processing. It is an attempt to provide
immediate experimentation with a fine granularity of control, so as to blur the line between
its use being a technical skill and being a creative skill. Collaboration is responsive and
easy to initiate, and is accomplished by input passing through OpenSoundControl. Thus,
bandwidth usage is low, and audio output is of a high quality.

This report is included in colour on the CD as the hyperlinked document Final Report.pdf.

Originality Avowal

I verify that I am the sole author of this report, except where explicitly stated to
the contrary.

Signed,

Date:

iii

Acknowledgements

Ian Mackie, for his support and advice as both my project supervisor and my
computer science good conscience.

Ben Fry, Casey Reas, Krister Olsson, Christian Riekoff, Andreas Schlegel, and the
Processing community.

Dominique Tompkin, my mother, for internationalization assistance and for contin-
ually improving my French.

This project will be a fun venture into wonderland. Don’t forget your hat!

v

Contents

Originality Avowal iii

Acknowledgements v

Contents vii

List of Figures ix

List of Tables x

1 Introduction 1

2 Background 3

2.1 Collaboration . 3

2.2 Audio . 4

3 Review 5

3.1 SubEthaEdit . 5

3.2 ArtPad . 6

3.3 The Fridge . 7

3.4 Just Letters . 7

3.5 GarageBand . 9

3.6 YellowTail . 10

vii

4 Specification and Design 13

4.1 Requirements . 13

4.2 Functional Specification . 14

4.3 Design . 15

4.4 Structural Specification . 22

4.5 Behavioural Specification . 23

5 Implementation 25

5.1 Development Environment . 25

5.2 Development Model . 27

5.3 Implementation . 27

6 Validation 37

7 Evaluation 39

7.1 Technical Evaluation . 39

7.2 Usability Evaluation . 42

7.3 Environment Evaluation . 43

8 Conclusion and Future Work 45

8.1 Conclusion . 45

8.2 Future Work . 46

Bibliography 49

Appendix 51

viii

List of Figures ix

Program Listings 63

Venues . 67

Venues Master Server . 69

List of Figures

3.1 SubEthaEdit . 5

3.2 ArtPad . 6

3.3 The Fridge . 8

3.4 Just Letters . 8

3.5 GarageBand . 9

3.6 YellowTail . 10

4.1 Volume Envelope . 16

4.2 Phrase Stage 1 . 17

4.3 Phrase Stage 2 . 17

4.4 Phrase Stage 3 . 18

4.5 Two Tier Model . 22

5.1 Collapse Detail 1 . 31

5.2 Collapse Detail 2 . 31

5.3 Collapse Detail 3 . 31

7.1 Box and Whisker Diagram . 40

7.2 Canvas Screenshot . 42

1 UML Use Case 1 . 52

2 UML Use Case 2 . 52

3 Internal Phrase Representation Diagram 53

4 Structure UML Class Diagram . 53

5 Process Loop UML Statechart . 54

6 Threads UML Sequence Diagram . 55

7 Structure UML Class Diagram . 56

8 Threads UML Sequence Diagram . 57

9 Networking UML Sequence Diagram . 58

10 GUI Flow Diagram . 59

List of Tables

4.1 Input Bandwidth . 19

5.1 Good Hashing Primes . 33

7.1 Actual Input Bandwidth . 40

7.2 Performance . 41

1 Regression Testing . 59

2 Black Box Testing . 60

3 Metrics . 60

4 Simulated Collaboration Results . 61

x

Chapter 1

Introduction

Collaborative software rarely leaves the office. Be it team management, shared doc-
ument editing or extreme programming, there is very little collaborative software in
the creative arts market. There is potential for collaboration in this field, especially
in group arts such as audio creation.

Audio creation software rarely leaves the studio. It is often expensive, complicated
and a hindrance to immediate experimentation. Though powerful, manipulating
audio software is chiefly a technical skill. There is scope to explore changing this
interface ethos from a technical to a creative one.

Much work has been done on such interfaces, notably by Levin [9], but his work
is aimed at one-time performance rather than production. Simple audio creation
software often looks and feels like a cut-down version because it actually is a reduced
version of more complex software. Less is often more during the initial stages of
audio creation when properly designed. Thus, an accessible interface within which
to experiment without interference increases workflow.

The aim of this project is to explore audio collaboration and play-evoking interfaces
so as to produce a piece of software which successfully marries these ideas.

This report presents the processes applied to complete the project, from the topic’s
background to Venues’ potential future. A review of existing noteworthy software
was first conducted (page 5). Following this investigation, development was under-
taken. This is documented in the design, implementation and validation sections
(pages 13, 25, and 37). An in-depth evaluation and conclusion completes this work
and gives insights into possible extensions (pages 39 and 45).

1

Chapter 2

Background

2.1 Collaboration

Computer-supported collaboration has existed in one form or another for over 30
years. The most broad-minded onlooker may consider the creation of ARPANET
and the following communication tools (e-mail, ftp) in the early 1970’s to be the
first instances of computer-supported collaboration [1]. The creation of USENET
in 1980 and specifically the advent of news bulletin boards and news software may
be a more sensible starting point - enabling user interaction grouped around specific
topics (e.g. sci.research or soc.culture.african). USENET became an environment
where online communities could develop and prosper.

Alongside USENET, with the introduction of the minicomputer in the mid 1970’s,
attempts were made to support group working in software (so called Office Au-
tomation - involving integrating and extending word processors and spreadsheets
to support teams and departments) [2]. In 1984 the term Computer Supported
Cooperative World (CSCW) was coined, and along with the adoption of the term
Groupware (denoting the research and commercial technology aspects respectively),
gave focus to the development of collaborative systems in the workplace.

Since then, although USENET still exists, it has been superseded by internet fo-
rums and web logs. So called ‘social software’ is emergent in its opt-in approach,
and exists primarily to enable interaction between individuals and groups (through
whatever commonality). Social software often includes some ‘six degrees of separa-
tion’ aspect to link users, semantic tagging to categorize content, and publication
tools such a photograph sharing. Websites such as MySpace.com package this into
an online community.

Groupware has developed and is now an integral part of the modern corporate of-
fice. The groupware approach places people into groups defined organizationally or
functionally. Management software keeps track of schedules, calendars, tasks and
documents for the hierarchy of teams and workgroups. Communication collabora-
tion allows remote conferencing and document editing. Tools such as SubEthaEdit
allow for extreme programming and collaborative note taking in conferences.

Social software networks are flourishing - MySpace.com’s user base has quadrupled
since January 2005 to 40 million members, and in October 2005 it accounted for 10%

3

MySpace.com
MySpace.com

4 Background

of all advertisements viewed online [3]. In contrast, groupware has had a difficult
development and a troublesome integration. Collaboration is often at odds with
the competitive corporate environment, and convincing people to use the software
is often the tallest hurdle to jump - groupware often fails to achieve the critical mass
necessary to be useful [4] (a lack of interoperability and individual benefit are cited
as common reasons for failing to achieve critical mass) [5].

2.2 Audio

Electronic instruments date back to the late 19th century, when Thaddeus Cahill
developed the monstrous Teleharmonium, a multi-ton polyphonic multi-keyboard
harmonic organ. Post-war, the analogue synthesizer (made famous by Moog) dom-
inated the initially experimental electronic music scene for 35 years. By the end
of the 1970’s, musicians were using many different synthesizers to produce music,
each using a proprietary connection system. The need to control many synthesiz-
ers at once coupled with the growing interest in digital sequencing led Dave Smith
of Sequential Circuits and Roland to develop the MIDI standard in 1982. MIDI
provided a common communication between synthesizers, and when using Roland’s
famous MPU-401 PC interface and MESA software, allowed for digital sequencing
and synchronization. Twelve Tone Systems soon released their Cakewalk software,
and computer music was born.

By the mid to late 1990’s, desktop computers were becoming powerful enough to
replace musical hardware. Software synthesizers and samplers replaced their dedi-
cated analogue and digital counterparts. Graphical user interfaces tended to repli-
cate the devices they were replacing - visual knobs and buttons needed to be turned
using the mouse or via a dedicated MIDI controller. Sequencing software presented
a grid interface of note against time.

As computers became more powerful, music software allowed for more features. It
has been said that, in the 21st century, audio is ‘basically done’ [6] - although it may
not be real-time, whichever way you’d like to manipulate audio, it’s possible. The
digital studio can be compressed to a laptop with no real loss of function or quality.
However, whilst ProTools and Logic are synonymous with the modern studio, in
the home computer music is rarely exploited, leaving the pc to be more of a jukebox
than an instrument. When Apple introduced GarageBand in 2004 they went some
way to increasing the number of people using their computers for audio creation.
Critchley comments that GarageBand allows creative thought to flow much more
freely than Logic because “it has so little going for it” - the simplicity is “exactly
what you need when you have an idea” [7]. Musicians are benefiting in the early
stages of music creation from having stripped-down, simpler software.

Chapter 3

Review

3.1 SubEthaEdit

http://www.codingmonkeys.de/subethaedit/

Figure 3.1: Each participant’s contributions can be seen clearly
labelled with their individual colours in SubEthaEdit.

As previously mentioned, SubEthaEdit is a collaborative text editor for MacOS X.
Each member’s work is highlighted in their particular colour. The group’s creator
controls access rights to the people working on the text, but does not hold authority
over anyone else in the group. SubEthaEdit also shows each person’s location within
the document by placing a representative coloured block in the vertical scroll bar.
Whilst being a fully fledged editor, it only supports plain text (not rich text).
SubEthaEdit prides itself on being a lean, high performance text editor without
superfluous features - the key idea being that bloat complicates collaboration.

Similar software of note:

Emacs has supported collaboration through the talk-connect and make-frame-on-
display functions for many years, though Bray suggests that their names have hin-
dered their use [8].
http://www.gnu.org/software/emacs/emacs.html

5

http://www.codingmonkeys.de/subethaedit/
http://www.gnu.org/software/emacs/emacs.html

6 Review

MoonEdit is a multi-platform collaborative text editor. It has many of the features
of SubEthaEdit, and includes useful tools such as a calculator. Its networking is
built on a client/server architecture, and allows for collaborative sharing and editing
of whole directories.
http://moonedit.com/

There is currently much fascination with collaborative editors, especially concern-
ing wiki integration1. There exist only a handful of programs (approximately 20)
that will edit text in real-time, and although uptake is slow, there is much enthu-
siasm over the possible applications of this technology. All three pieces of software
support this impressive function (as opposed to near real-time or simple version
control). Emacs’ support of this feature is relatively unknown, as is MoonEdit, but
SubEthaEdit is quietly famous. SubEthaEdit’s advantage is in contact list inte-
gration, whereas MoonEdit only supports using a server’s IP address. It could be
said that the majority of SubEthaEdit’s renown is not due to it supporting more
features, but due to it being a darling of the Mac community.

3.2 ArtPad

http://artpad.art.com/artpad/painter/

Figure 3.2: ArtPad has many tools for sharing creations - here
we can see ’hang in gallery’ and ’save & send’.

ArtPad is an online virtual canvas. It allows a single user to use simple tools
to create a piece of art, and share it with their friends (through email or via a
hyperlink). Mouse movements are recorded so that paintings can be replayed -
each stroke can be viewed in order at various speeds. Thus, the viewer gains an
insight into how the painting was created. The transferable nature of these paintings
elevates ArtPad to a piece of collaborative software: once a painting has been
received, it is still an open canvas - the receiver can add new paint or even remove
existing paint from the canvas.

1Many users collaboratively editing an article inside a wiki, rather than each user in turn
obtaining a lock on that article.

http://moonedit.com/
http://artpad.art.com/artpad/painter/

3.3. The Fridge 7

Similar software of note:

Imagination Cubed, released by General Electric, is an online whiteboard written in
Flash. It allows users to collaboratively draw in real-time, allows the image to be
shared and saved by email, and allows for simple printing. The interface is minimal,
using a menu bar and a floating (though minimizable) tool window.
http://www.imaginationcubed.com/

Beauty and Chaos is a very simple digital canvas that allows for real-time collab-
orative drawing. Only one tool is provided: a yellow pen. No user interface exists
so to speak, the only information given is whether you are connected to the server
and how many people you are drawing with. Other users on the canvas can be seen
as small cursors when they are drawing.
http://ericdeis.com/content/beautyandchaos/beautyandchaos.php

Imagination Cubed trumps ArtPad by supporting most of ArtPad’s useful functions
whilst allowing for real-time collaborative painting. Imagination Cubed provides
the user with a much larger canvas, although it does have a restriction on the
number of strokes you can place upon this canvas before it starts removing the
oldest strokes. Unfortunately, Imagination Cubed suffers because it is seen as an
advertising activity for General Electric, and its merits are drawn from an exercise
for a corporate community. Beauty and Chaos is somewhat different from the other
software in that its interface is so sparse as to be experimental. The amount a
user can do with just one tool is so restrictive that it forces them to approach the
activity with a different frame of mind. This can make Beauty and Chaos’ output
more interesting than that of its counterparts; however, it also means that often it
produces nothing constructive at all as users struggle to realise their ideas.

3.3 The Fridge

http://www.melbs.org/projects/fridge/index.cgi

An example of a simple piece of social software, the online fridge magnet allows
people to compose poetry. Although the actual process is solitary, you can title and
save your composition for others to read. Reading other people’s poems is more than
just reading text - the poem is presented as the final state of the fridge, allowing
the poet to be spatially creative and providing the reader with a greater insight
into the poet’s workflow. Different magnet styles are available, from Shakespeare
to E.E. Cummings. Code and poetry is distributed under the Creative Commons
licence.

3.4 Just Letters

http://web.okaygo.co.uk/apps/letters/flashcom/index.htm

Just Letters is another example of fridge magnets. The participants share a virtual
fridge surface and can move individual letters. The fridge’s state cannot be saved,

http://www.imaginationcubed.com/
http://ericdeis.com/content/beautyandchaos/beautyandchaos.php
http://www.melbs.org/projects/fridge/index.cgi
http://web.okaygo.co.uk/apps/letters/flashcom/index.htm

8 Review

Figure 3.3: One of the many magnet styles The Fridge offers is
the Britney Spears style.

Figure 3.4: The tagline, “Someone keeps stealing my letters...”,
encapsulates the frustration Just Letters creates.

3.5. GarageBand 9

and there are no rules or conditions. The environment causes competition over
highly sought after letters, and the sabotage of words is common.

The Fridge could not be said to be collaborative software, although it is social
software. The key definition difference between the two virtual fridges is the direct
interaction with other participants that makes Just Letters collaboratory (even if
most users tend to competition). Similarly, Just Letters could not be said to be
social software. All interaction is anonymous, there are no saved fridges - it could
be said that social groups could use Just Letters only as a play activity.

3.5 GarageBand

http://www.apple.com/ilife/garageband/

Figure 3.5: On first glance, GarageBand’s interface looks intim-
idating. However, compared to CakeWalk, it is both a piece of
cake and a walk in the park.

As previously mentioned, GarageBand is music creation software for MacOs X.
GarageBand supports multiple instruments across multiple tracks. GarageBand
supports audio (waveform tracks) and synthesized instruments (grid tracks - Live
Grand Piano and Hollywood Strings from the screenshot). GarageBand supports
plug-in synthesized instruments and loop creation. GarageBand is simple - there
are no menus (let alone multi-nested menus), there are few button controls, and the
interface relies on drag-and-drop.

Similar software of note:

CakeWalk Sonar Home Studio for Windows is of similar complexity to GarageBand.
It supports a finer grain of control and co-operates with a greater variety of plug-
ins and software. Sonar’s interface is much more complex, however, and is full of

http://www.apple.com/ilife/garageband/

10 Review

buttons, menus and tabs.
http://www.cakewalk.com/Products/HomeStudio/default.asp

Mixxx is an open source multi-platform DJ tool. As a digital DJ it provides channel
mixing from file or source, beat estimation, and parallel displays. Of note is its very
clean interface and clear labelling.
http://mixxx.sourceforge.net/

Apple currently has two major pieces of music creation software on the market:
Logic and GarageBand. Whist Logic is designed to accommodate almost any audio
task, GarageBand was designed separately from the ground up as simple software
to enable the average consumer. Logic’s competitors, one of these being Cake-
Walk, produced cut down versions of their software to compete with GarageBand -
herein lies the difference: CakeWalk retains much of the control (from its big broth-
ers) unnecessary for simple production and as such appears intimidating; whereas
GarageBand appears inviting. Csikszentmihalyi’s studies of the thought processes
of creative people manifesting as flow are reiterated in Critchley’s complaints about
complicated electronic musical instrument interfaces [7]. His now altered workflow,
using GarageBand as a whiteboard for ideas instead of Logic, demonstrates the very
real need for interfaces that benefit expression and promote flow.

3.6 YellowTail

http://www.flong.com/yellowtail/

Figure 3.6: YellowTail presents almost no interface at all - the
user is free to experiment.

YellowTail is an experiment by Golan Levin in interactive gestural creation and
performance. YellowTail allows the user to draw lines on the screen, which are then
repeated end-over-end so that they travel across the screen. As part of a suite of

http://www.cakewalk.com/Products/HomeStudio/default.asp
http://mixxx.sourceforge.net/
http://www.flong.com/yellowtail/

3.6. YellowTail 11

similar “painterly interfaces for audiovisual performance”2, YellowTail interprets the
moving lines on the screen and generates audio by applying an inverse spectrogram
at points of intersection along a sweeping time indicator. YellowTail permits the
real-time creation and performance of dynamic image patterns.

YellowTail is not music creation software in the same vein as GarageBand. The
output from the inverse spectrogram method has been described by its creator,
Frank Cooper, as “highly intelligible” speech [10], and whilst this makes sense in the
abstract, many people would consider YellowTail’s output to be nothing more than
‘blips and blops’. As an instrument YellowTail succeeds in generating interesting
audio samples for many different types of music (though it could be said none of
them in the mainstream of listening habits). With prior knowledge of YellowTail’s
process it is quite possible to match the audio to the visual.

YellowTail’s attempt to marry a free flowing interface with audio generation is to be
commended, but more often than not the user’s intended effect is not forthcoming.
It could be said that the same results could be generated by a pseudo-random
algorithm, and for that reason the software is unfulfilling. Levin performed a number
of composed concerts using YellowTail and the rest of his suite - whilst I would be
enthusiastic to hear and (I predict) enjoy them, I would feel at a loss to ascertain
the accuracy of the rendition.

All software features presented are correct as of October 2005. Newer versions of
the software presented may now be available, however these updates did not factor
in the design process.

2YellowTail was the first of Levin’s AVES suite, and his progression of ideas is demonstrated
through the remaining four pieces of software. However, their discussion is not warranted here
as their basis does not deviate from abstract expression. Interested readers are referred to [9] for
more information.

Chapter 4

Specification and Design

4.1 Requirements

After review, here are the high level requirements of the software:

1. Provide an instrument for audio output.

2. Provide an interface for this instrument that removes clutter and promotes
flow - to be as simple as necessary in an attempt to evoke play.

3. Provide a system for collaboration within this interface - for users to interact
through a shared interface, to modify each other’s work.

4. Provide a system for initiating collaboration with minimal networking knowl-
edge.

1. The software is not required to be able to create music. It will provide manipu-
lation of an instrument of limited complexity (e.g., a tone generator). The aim of
the project is not to develop a realistic software synthesizer, nor to develop a fully
functioning sequencer. However, if progress is swift, the ideal would be to provide
functionality similar to that of a simple sequencer.

2. The interface should provide intuitive access to all of the instrument’s features
and attributes. Given collaboration, the interface should be accommodating to
multiple users and provide information on the actions of the other users.

3. Collaboration should be location independent - collaboration does not require
users to be in the same physical space. I have not stipulated that collaboration
should be real-time. I will attempt to find a solution so that real-time collaboration
is possible, but the outcome may be near real-time or worse.

4. Similarly, I have not stipulated the exact method for initiating collaboration.
As much as it would be desirable to have a fully functioning website replete with
community tools and contact tracking, it will be likely that I simply do not have
time to implement this. A more likely implementation is client-server or peer-to-
peer networking.

13

14 Specification and Design

4.2 Functional Specification

Use Case diagrams were created to model the functionality available to a user (1
and 2). The first, third and fourth requirements (4.1) are functionally modelled by
these Use Cases.

Functionally modelling the second requirement is a little trickier. It would be naive
to specify an interface this early into development, but we can specify design prin-
ciples that are to be adhered to. Using my review research, the design techniques
set out by Ambler [11] and the design principles established by Constantine and
Lockwood [12], here are the key interface design points I have identified that are
specific to Venues:

Canvas-like working area The system should maximize the available working
space - this is vitally important to evoke play. If possible, there should be no
space in the software that isn’t workable area. (See YellowTail 3.6, Beauty
And Chaos 3.2)

Floating/disappearing interface To maximize the canvas space, other interface
elements should be able to ‘float’, and, if possible, entirely disappear when
not in use. (See Imagination Cubed 3.2)

Simple interaction The most common tasks should be the simplest to perform.
All instrument playing (phrase creation, modification, deletion, etc.) should
be available by only using the main input device (in most cases, the mouse).

WYSIWYN Separate from WYSIWYG, “What You See Is What You Need”.
Everything required to create should be instantly available, and everything
additional should not be visible [13]. This also applies to the amount of
information presented to the user. (See SubEthaEdit 3.1)

Low screen density Musical score notation is clear and concise. To allow easy
readability using non-standard notation (or, in the abstract, no logical no-
tation at all), the ratio of objects to screen space should not exceed 1:2.5
[14].

Consistent The interfaces on and off the canvas should behave consistently. Given
the specialized nature of the canvas, it is not expected that the canvas inter-
face will be consistent with, say, the collaboration initialization interface (for
instance, you shouldn’t have to draw the address of the collaboration session
you wish to join). (See ArtPad 3.2)

Intuitable Users should be able to make educated guesses as to how to use the
system. Even when guesses are wrong, the system should provide reasonable
results from which the user can learn. (See GarageBand 3.5)

Frequent response-based revision Create the interface through evolution - as
new features are added, solicit feedback from potential users and integrate
suggestions that are consistent with the interface design principles [15].

4.3. Design 15

4.3 Design

Non-Functional Design

Awareness of the importance of the non-functional design of software is crucial. A
bad design can impede tasks of all types. Although most of these tasks do not relate
directly to the user, a bad non-functional design increases code complexity during
implementation, and hence increases the time it takes to maintain and extend the
system.

• Modularity - the system should be designed with a modular approach and the
responsibility of each module should be clearly separated.

• Low Coupling and High Cohesion - internal modules should be highly related
and the design should aim to minimize the dependencies between modules.

• Flexible and Extensible - it should be easy to extend and maintain the system.

• Comprehensible and Verifiable - the system’s structure and components should
be easy to understand and each component should have a clear purpose and
meaning.

• Coding standards should be followed throughout.

Satisfaction of the non-functional design requirements is neither an easy task to
perform nor a result easily measured. Using a metrics analysis package throughout
development would assist in meeting these requirements. We can use the LCOM1

metric to measure cohesion; the AC2 and EC3 metrics to measure coupling; and
MCCC4 metric to indicate the comprehensibility and verifiability of the method
procedures.

Input Interface

The input interface for the system is critical. The method by which a user creates
phrases for the instrument should not be slow or cumbersome. Analysing the review
material shows that the problem found with YellowTail (3.6) is not intrinsically tied
to its painterly interface - the significant usability problem of finding it unfulfill-
ing falls squarely on the inverse spectrogram technique. Comparing YellowTail to
the collaborative painting applications shows the benefits that a painterly inter-
face could bring: it takes a chiefly technical skill (audio production in software)
and translates it to a chiefly creative skill (non-technical drawing and painting).
Painterly interfaces are also fast - in the case of YellowTail, it is possible to create
a cacophony within seconds. In traditional software sequencers (such as Garage-
Band, 3.5), it is common to define envelopes for volume using vertices joined by
edges - mapping out a visually mountainous landscape across the track (see figure).
It could be seen as a small side step to take this idea and develop it into a painterly
interface.

1Lack of Cohesion of Methods - a low LCOM value represents high cohesion.
2Afferent Couplings - the number of other packages that depend upon classes within the system.
3Efferent Coupling - the number of other packages that the classes within the system depend

upon.
4McCabe’s Cyclomatic Complexity is a measure of the linearity of code (i.e., how much it

branches).

16 Specification and Design

Figure 4.1: We can see the volume envelope of an audio file
being edited in Sony Sound Forge 8.0.

YellowTail’s interface could be seen to be missing important structure. Beauty and
Chaos’ lack of tools (and subsequently the interface for these tools) occasionally
causes a creative problem for its users, and a lack of any control (to edit) could
cause frustration. Providing users with the most important basic functions from a
sequencer whilst still providing a minimal interface would strike a subtle balance.
After referencing GarageBand, Cakewalk, et al., I have identified what I believe are
key features below5:

• Multi-tracked

• Volume control per-track

• Pan control per-track

• Tempo per-track

• Mute per-track

• Time bar control

• Edit control over created phrases (move/delete/modify)

YellowTail creates its worms based on the speed of input - the slower the creation,
the thicker the worm. When the inverse spectrogram is applied, the thickness
relates to the variance in the distribution of frequencies that are amplified and fed
into the additive synthesizer. It would be possible to take this idea and extend it to
modifying an attribute of the instrument - for instance to make the speed of phrase
input (the thickness of the line) affect the volume of, say, the non-fundamental
harmonics of a tone. MIDI users will no doubt see the potential for a relationship
between the speed of phrase input and the velocity of a note.

I am not confident that modifying key attributes of the instrument based on the
speed of input is useful. When implemented, it may in fact bring no benefit to the
user if it is unwieldy and frustrating. For Venues to be fulfilling, the user must feel
as though the system is responding accurately to the user’s input. I will investigate
this possibility in the implementation (5).

5Although I stated (4.1) that a simple sequencing environment would only be developed if
time permitted, I now believe that it is a necessary feature for the system and it will be built into
the design. Attempting to retro-fit a system to be multi-tracked that was initially hard-coded for
only a single track may have proved difficult.

4.3. Design 17

The proposed representation of a phrase (ignoring thickness variation) can be seen
in figures 4.2, 4.3 and 4.4. If, for instance, the figures were mapped to volume and
pan (4.4), we would have per-phrase volume and pan - this increases the granularity
of control over the proposed key features (4.3). If a track has a default attribute
then these would be applied to any phrase within the track that did not specify
that attribute.

Figure 4.2: The circle acts as a control point for the phrase -
right clicking on the control point allows the user to drag the
phrase, left clicking on the control point produces the following:

Figure 4.3: A semicircular shape pops up allowing the user to
select different attributes of the phrase. The user then draws
another line from the control point that controls this attribute.
The semicircle could expand to hold more segments depending
on requirements (for example, a per-phrase mute).

Data Representation

Given that the software is to allow multiple tracks, caution must be taken when
thinking about the internal representation of phrases. If the user is to be allowed
to change the number of tracks on-the-fly (a great boon for a flowing interface),
the screen space allocated per track should expand and contract to maximize the
working space. Storing the phrases as pixel positions would make this difficult. Take
this example: the user draws a phrase then adds a track. The software calculates the
new pixel positions for the phrase (in the now reduced screen space of the track) from
the old pixel positions. The user then removes a track, and the software calculates
the new positions for the original phrase (for the now increased screen space). To
not lose precision when up-sizing the phrase, a second non-changing representation
of the phrase would have to be stored. Instead, storing the phrases as a ratio of
the track’s screen space would eliminate this complication. When rendering, the
software takes the ratio and multiplies it by the screen size of the current track to
give the pixel position.

A phrase will be stored as a set of figures - each figure represents an attribute of
the instrument and is set at a certain ‘depth’. Each figure will be stored as a set of
points (represented as floats, as explained above). This can be seen in figure 3.

18 Specification and Design

Figure 4.4: The second line, in the corresponding colour and
with less weight, may represent the volume or (in this case, a
likely example of a) pan envelope of the phrase. Using such a
system consequently brings about per-phrase, rather than per-
track, volume and pan.

Networking

The underlying networking architecture doesn’t arbitrarily restrict the functional-
ity of the application, but the architectural choice does depend on the amount of
bandwidth the system requires and the amount of bandwidth available.

Bandwidth Requirements

There is a discussion to be had about exactly what data gets transmitted between
users. The options available are:

Transmit audio The audio output from each client is transmitted to all clients
and mixed and synchronized client-side.

Transmit data and receive audio The data6 from each client is processed as
audio on one machine, and this audio is transmitted to all clients.

Transmit data The data from each client is transmitted to all clients and pro-
cessed as audio client-side.

Uncompressed audio at CD quality7 requires 1.4Mbps of bandwidth. Accounting for
moderate 20% network overheads [16] raises this to 1.7Mbps. In the first case, each
client would require 1.7Mbps per client. In the second case, each client requires only
1.7Mbps of bandwidth, but the machine processing the audio again requires 1.7Mbps
per client. Compression techniques could be used, requiring real-time compression

6The state of the system - a set of all values needed to reproduce that state.
716 bit, 44100Hz Stereo.

4.3. Design 19

Mouse Input Bits

Mouse Pressed boolean 1
Mouse Button byte 8
Mouse X short int 16
Mouse Y short int 16

Total 41

x 125 5125

Table 4.1: We can see how much bandwidth is necessary to
transmit the mouse input from a client.

(not a trivial task for a CPU) and decompression. Although this would reduce the
bandwidth requirements to 230kbps8 per client, it would damage the application’s
credibility with musicians because compressed audio is almost never desirable.

If that much bandwidth were available (this is certainly the case for LANs), both
the first and second cases guarantee that all clients would hear exactly the same
output. This is a very significant property, as audio hardware will undoubtedly vary
from machine to machine.

The third option requires considerably more processing power per client (each
client’s data must be processed as audio client-side) but reduces bandwidth re-
quirements significantly. It is difficult to estimate exactly how much bandwidth
would be needed, but if each client’s mouse input were transmitted 125 times a sec-
ond9 it would require just over 6kbps per client including overheads (see figure 4.1).
The third option does not guarantee that each client’s output will be identical (this
would only be the case if each client had identical hardware) but it has bandwidth
requirements that are (with optimization) within the reach of dial-up users.

Broadband adoption in the UK has been fast, but not ’synchronous 10Mbps per
household’ fast. As transmission of uncompressed audio is not feasible, and trans-
mission of compressed audio is undesirable (and has its own significant overheads),
the most reasonable option is to transmit client inputs (and other significant data
where necessary).

Network Architecture

The two architectures available for real-time systems are client-server and peer-
to-peer. Given that we will be transmitting client inputs, the network processing
requirements of both architectures are the same - each client must process all other
clients’ input. However, client-server architectures become more bandwidth efficient
when the number of clients rises above two. This is a significant result for a real-time
system - with four clients, client-server uses 40% of the bandwidth that peer-to-peer
uses. With eight clients, client-server uses only 16%.

8192kbps: Average value for variable bit rate compression using LAME’s CD quality setting
–alt-preset standard.

9Most USB mice poll at 125hz, PS/2 mice poll anywhere from 30-200hz.

20 Specification and Design

Client-server does have a natural single point of failure and the server is liable to
become a bottleneck. The code is also more complicated to implement, however I
have past experience with client-server architectures and do not anticipate having
architectural problems.

In the games industry, where many products include real-time networking, it is
common for products to ship with dedicated servers10. Whilst a dedicated server
provides more options for networking setup, they usually become necessities when
client numbers climb into the tens and beyond. Although I can imagine a collabora-
tive musical instrument with 16 users, it is not a pleasant thought imagining what
it might sound like (perhaps a virtual conductor could orchestrate). I do not plan
to support that many users, and so a dedicated server is unnecessary.

On the other hand, a master server11 would provide many benefits. A master
server would meet requirement four (4.1) aptly. When a client wishes to connect
to a collaboration session, they would query the master server, which would return
all available sessions. The client then joins the most suitable session with minimal
fuss.

Synchronization

For the occasion that a client’s input goes astray, the collaboration session must
be able to synchronize itself. Assuring that clients are synchronized after every
transmission would be overkill. A more suitable strategy would be for the server to
regularly send ’synchronization checks’ with the most current state of the session.
If any client returns false, the server can initialize synchronization with all clients12.

User Access Rights

Requirement three (4.1) states that users should be able “to modify each other’s
work”. In Just Letters (3.4), the environment is a competitive one, as users regularly
sabotage other user’s attempts at creating. An initial reaction to prevent compe-
tition and encourage collaboration might be to implement content write locks or
access rights.

Beauty and Chaos (3.2) does not implement write locks on content - users can edit
any other user’s work. However, Beauty and Chaos does not provide users with any
means of removing paint from the canvas, and so the edit functionality is limited
to ’overpaints’. As the brush strokes are thin, sabotage is made ineffective and
attempting to completely overpaint another user’s work is painstaking.

SubEthaEdit (3.1) has per-user access defined by the collaboration leader, but once
a user has access rights they are free to edit any content. This is a ‘trusted’ write
lock that depends on the validity of the identity of the user that is invited into a

10As opposed to a listening server, where a client and server is run on the same machine, a
dedicated server runs solely to be the ’middle-man’ between clients.

11A master server holds the details of all the servers currently running, globally.
12It is necessary for the server to synchronize with all clients, rather than just those out-of-sync,

to stop those clients once again becoming out-of-sync during the time that it takes to synchronize.

4.3. Design 21

collaboration session. Write privileges may be revoked at any time. The ‘undo’
facility included in SubEthaEdit neuters any potential saboteur.

When viewing Venues as a tool for artistic expression, it is difficult to justify the
presence of content write locks. Beauty and Chaos is primarily an artistic tool (and
something of an experiment), and content write locks are at odds with its ethos.
It could be suggested that including an option for the server to toggle write locks
would satisfy both those users wanting to experiment and those users wanting to
work. However, the mere inclusion of a content write lock option defines the way
in which a user views the system. If the concept of ownership is introduced into
a collaborative environment it immediately secludes users from one another and
ultimately hinders collaboration.

SubEthaEdit’s access rights provide an effective solution to enable trusted collabo-
ration without enforcing content write locks.

The kick facility outlined in the functional specification (4.2) provides a way for
the collaboration leader (i.e., the server) to remove users. Trusted access similar to
SubEthaEdit would require either a contact list (with unique id and authentication
server) or integration with an existing ‘contacts’ system (instant messaging). I
do not believe I have time to implement either of these two non-trivial solutions.
However, a much simpler way of enabling trusted access is by allowing the server to
specify a password. Although it is not as elegant as SubEthaEdit’s solution (which
allows for ‘spectating’), it is still absolutely effective.

Graphics Rendering

The system’s rendering technique must be able to deal with the complicated user
interface design rules (4.2), such as floating and disappearing components, in real-
time. The user interface must also update fast enough to match the speed of client
inputs so that the networking is transparent. A typical ‘windowed’ GUI will most
likely not provide sufficient update speed to cope with client inputs, and it may be
necessary to use a graphics API such as OpenGL to accelerate the rendering. Once
the speed of rendering has been established I can then match this to the client input
speed.

Audio

The design of the audio subsystem is heavily dependent on the development envi-
ronment. It is impossible to design any details until I know what is feasible with
the audio interface I will be working with. Audio interfaces will be discussed when
the development environment (5.1) is decided upon.

22 Specification and Design

Internationalization

Requirement three (4.1) dictates that the system must allow collaboration over
a network. It is shortsighted for any piece of software that is networked and/or
distributed on the Internet to not at least support different user locales (even if the
users must themselves translate). Internationalization (henceforth known as ‘I18n’
or ‘i18n’13) options should be available for all relevant fields. This includes providing
easy translation for all text, providing location specific number, date, measurement
and currency formatting, and providing non-culturally bound images.

4.4 Structural Specification

A traditional three tiered architecture consisting of a GUI, Functional Core and
Data Repository is not a good model to follow for this software. Drawing the GUI
in real-time is one of the significant tasks that the functional core must perform.
As an alternative, two tiers may be represented - a ‘real-time processing’ tier and a
‘data repository’ tier (figure 4.5). The processing layer deals with network, graphics,
and audio processing, whilst the data repository stores the state of everything that
needs to be processed. In each real-time tick14 the software will handle client inputs,
draw the GUI, and process the audio.

Networking Input Output

Tracks Phrases

Real-Time Processing

Data Repository

Figure 4.5: Although the software uses many fields of comput-
ing, its architecture is simple.

A class diagram of the proposed structural design can be seen in figure 4. It is
worth noting that:

• the main class can be both a server and a client (known as a listening server).

• each client’s input is of the type UserInput. The main class has many User-
Inputs.

• the master server is a separate entity. It is not connected in any way to the
main application and runs as its own application.

• the master server has many server objects. Similarly, the client has many
server objects.

13Internationalization is generally shortened to i18n as there are eighteen letters between the
first and last letters.

14Similar to the tick of a clock, each tick represents a frame of the system.

4.5. Behavioural Specification 23

4.5 Behavioural Specification

As modern hardware is capable of both rendering 2D and processing audio at speed,
it should not be necessary to thread the GUI drawing separately from the audio
processing. However, the client input collecting should run in a separate thread.
Client inputs will be received at any time (between ticks, within ticks, and of any
number), and these need to be collected and ordered so that no input is lost. A
statechart of the processLoop() method can be seen in figure 5.

Figure 6 shows the threads of the system, their lifetimes, and their activities as a
UML Sequence Diagram. The diagram also shows the predicted network activity
(ignoring master server communication).

Chapter 5

Implementation

5.1 Development Environment

The development environment should be defined by the easiest path to implement
the most challenging subsystems. In Venues’ case, these are the graphics and audio
subsystems.

Graphics Subsystem

Java Cross-platform. Provides extremely accurate 2D software rendering through
Java2D with a fine granularity of control. Supports per-pixel AA1. Rendering
comes at a cost, however, and a blank canvas of size 400x400 pixels fails to
reach 60fps2. Zero cost SDK and IDEs.

OpenGL Cross-platform. Industry standard. Provides accurate 2D rendering
through fixed 3D viewports with hardware support. AA support is per sub-
pixel and hardware dependent. Rendering is fast - modern hardware renders
a blank canvas of size 400x400 in excess of 1000fps. Zero cost SDK and IDEs.

Processing Cross-platform. BETA. Provides accurate 2D rendering and fast inac-
curate 2D rendering through a fixed 3D viewport (P3D). Provides an interface
for JOGL3. AA is supported per-pixel in accurate 2D and JOGL modes.

DirectX Windows. Proprietary suite of technologies. Component Direct3D is
equivalent to OpenGL in low-level api functions and rendering speed, how-
ever Direct3D also provides high-level access to different rendering techniques.
Requires a Microsoft development environment such as Visual Studio, and use
of a supported language (Basic,C++,C#,J#). £299 cost SDK and IDE.4

Torque Cross-platform independent game engine. Provides 2D and 3D rendering
through OpenGL. Microsoft Visual C++ is the only compiler supported for
Torque source. £70 cost SKD and IDE plus cost of compiler (£299, within
Visual Studio).

1Anti-aliasing.
2Frames per second.
3Java bindings for OpenGL 1.5.
4On 7th November 2005, Microsoft announced Visual Studio Express Edition - a free develop-

ment environment for students and hobbyists based around a cut-down Visual Studio 2005.

25

26 Implementation

Audio Subsystem

Java Cross-platform. Provides 32 2D channels in software through JavaSound.

OpenAL Cross-platform. Provides abstracted access to hardware 3D channels.

Processing Cross-platform. BETA. Provides extremely limited 2D audio support,
though libraries Sonia and Ess extend support to make Processing competi-
tive.

DirectX Windows. Component DirectAudio provides abstracted access to hard-
ware 2D and 3D channels. Feature rich.

Torque Cross-platform. Provides multi-channel (unspecified) 2D, and 3D through
OpenAL.

It is difficult to separate these subsystems as different environments require/ad-
vise using certain complementary subsystems. Whilst it would be possible to use,
say, Direct3D for graphics rendering and OpenAL for audio processing, it is easier
(specifically, it is painless) to integrate Direct3D with DirectAudio. All solutions
offer high-level networking interfaces, and so this is not a factor.

Anti-aliasing is necessary because, unlike most GUIs, Venues’ GUI will not be
constructed primarily of straight lines. Users may input phrases arbitrarily - anti-
aliasing is necessary to make these phrases look like lines and not stairs. Hardware
AA is desirable as the task is CPU intensive.

The Torque engine would provide the easiest path, and as a benefit the engine
centres a helpful community of hobbyists. However, the cost is prohibitive. Java’s
2D rendering is too slow to be useful. OpenGL is sufficiently fast for rendering,
however OpenAL provides no 2D channel support. It would be possible to create a
flat model for a 3D sound space, but this is unnecessary and overly complicated.

I will be developing Venues in Processing. However, attention must be paid to its
drawbacks:

Primitive IDE Processing’s IDE is extremely primitive. It is designed for people
unused to programming. I will be using Eclipse5 instead.

BETA status Processing is in development and has bugs. Although it is quite pos-
sible that I will not encounter any problems, I will pay attention to regression
testing to ensure that Processing updates do not break existing functionality.

Limited documentation Much of Processing is undocumented. I will interact
with the Processing community and make use of forum archives so that I do
not repeat the mistakes of others.

Difficult Integration Processing runs as an applet, which makes it particularly
difficult to integrate with other applications and the shell (not least for security
signing reasons). This reinforces the difficulty of contact integration noted in
the networking design.

5http://www.eclipse.org

http://www.eclipse.org

5.2. Development Model 27

Networking will be implemented using the OpenSoundControl [17] protocol 6. OSC
is a modern networking protocol with support for pattern matched messages, con-
currently executed message bundles, URL-style naming scheme, and simple mes-
sage identification. OSC is designed to support a client/server architecture and is
transport-independent. One major advantage of using OSC is that it is gaining
major support within the computer music industry - Native Instruments support
OSC messages across all their products7. With little effort it would be possible
to interface Venues with any other OSC supporting system (be it hardware or
software). This is discussed in the Future Work chapter (8).

To monitor how well Venues is satisfying the non-functional design, I will be using
Team In A Box’s Eclipse Metric Plugin8.

As Venues is a distributed system, it would be useful to have remote troubleshoot-
ing and debugging tools. I will setup a VPN using VNC to access the master server.
Eclipse also supports remote debugging and hot-swap through JPDA, further re-
ducing downtime.

5.2 Development Model

As an individual implementing a system from scratch, I will be using a staged
evolutionary prototyping model. Subsystems will be prototyped and integrated in
sequence. Unlike standard prototyping a working system will not be available early
in the development process, because to develop Venues to a ’working’ stage, the
integration of three complex subsystems is required. Evolutionary prototyping is
also a good fit for the user interface development, as it was not possible to specify
this in advance.

Prototyping makes verification difficult as the specification and design is signifi-
cantly abstract. It is possible to validate that the system meets the requirements
by demonstrating the adequacy of the system. I will be writing JUnit test cases
where useful alongside system code, making use of David Snaff’s Continuous Test-
ing plug-in for Eclipse9 to alert me to test case failures as I type. The results of
this will be covered in the Validation chapter (6).

5.3 Implementation

GUI

Each Track has a ScreenSegment that specifies where the track is located and how
large a space it occupies. This is a generalized rectangle solution and allows for
arbitrary placement and size of tracks. For ease of use, tracks are placed vertically
and occupy the full horizontal width of Venues. This is similar to standard musical
notation and sequencing software such as GarageBand (3.5). Existing tracks are

6http://www.cnmat.berkeley.edu/OpenSoundControl/
7Intakt, Reaktor, and Traktor.
8http://www.teaminabox.co.uk/downloads/metrics/
9http://pag.csail.mit.edu/continuoustesting/

http://www.cnmat.berkeley.edu/OpenSoundControl/
http://www.teaminabox.co.uk/downloads/metrics/
http://pag.csail.mit.edu/continuoustesting/

28 Implementation

automatically resized when a new track is added. Tracks are toggleable full-screen
by use of a keyboard button - this is context sensitive depending on which track
the mouse is currently in. Track height can also be increased and decreased - other
tracks automatically adjust to fill the entire canvas.

The current active track10 is highlighted, all other tracks become slightly faded
through a transition animation. Track information is displayed in the upper right
corner of each track. This fades away when the mouse is in proximity to allow all
areas of the canvas to be used. It is important that track information is displayed
most of the time as it differentiates between visibly similar tracks. Buttons to
add new tracks and remove tracks are displayed in the lower right corner of each
track. These only appear if the mouse is in proximity, and should the user be
creating/modifying a phrase, they do not appear (so that they do not intrude).

If no tracks exist (if the user removes all tracks) then the user is presented with a
screen containing buttons to add new tracks. The screen also informs the user how
to add new tracks via the keyboard shortcuts.

Phrases are implemented as a series of ArrayLists. Figure selection11 is implemented
through a complicated series of animations with fading via alpha-blending.

Message output has been redirected to the GUI. When the user invokes message
output display, a column of text slides down from the top left of the screen and
fades in. Keyboard help can be invoked (in a very similar fashion) - this slides and
fades in to the right of the screen. When the user dismisses these informations, they
slide and fade out.

All animations are framerate independent. Venues creates a Clock thread which
handles animation timing. The GUI is then free to render as fast as it can.

The GUI supports colour schemes. All colours used are redefinable via a simple
interface. Colour schemes may be loaded at any time and changes are both im-
mediately effective and saved to file as a preference (the preferred colour scheme is
loaded when Venues starts). A selection of colour schemes are provided, however
users can save new colour schemes and edit existing colour schemes. A default
colour scheme exists. Should a user not specify certain colours in their scheme, the
corresponding default colours are used. A user cannot overwrite the default colour
scheme. Were the user to attempt to edit their preferred colour scheme directly by
editing the .csc file but make a mistake (or if the stored preference failed to load
for whatever reason), Venues uses the default colour scheme stored as a hard-coded
backup.

Certain GUI elements too time consuming to custom code have been borrowed from
Swing - most notably, file choosers. However, Swing components share the same
colour scheme as Venues’ custom GUI. This mapping is defined in a separate file
and is loaded at start-up. It is possible for a user to manually specify which Swing
elements they would like recoloured (and which colours they would like to be used)
by editing this file.

10The track that contains the mouse.
11Which attribute of the instrument we are editing.

5.3. Implementation 29

Audio

Time signatures, along with a direction (legato, allegro, etc.) are used in musical
notation to define a tempo. Venues defines the beats per minute, beats per bar
(the quantization) and the number of bars per-track. This is in line with software
sequencers. The user can visually segment each track from these values - this is
toggleable per-track and fades in and out. These three values (all variable by the
user) define the speed of the sweeping bar (or time bar). The sweeping bar can
move through a track from left to right and vice-versa - this is toggleable. As the
bar moves within a track, it crosses phrases. The height within a track at which
the sweeping bar intersects a phrase determines the value of the corresponding
instrument attribute. The clock handles sweeping bar position calculation and
bar/phrase intersection. This occurs 60 times a second.

Venues supports three types of tracks: Wave (or Tone), File and MIDI. Wave tracks
can be either Sine, Square, Triangle or Sawtooth. Wave tracks have a frequency
range, variable from 0-40Hz to 0-10040Hz. If the user holds down the Control key,
the frequency relating to their current mouse position and the closest musical note
to that frequency are displayed.

File tracks are created from an external file. This can be of type AU, AIFF, WAV
or MP3. File tracks can be set to play once or loop for the length of the phrase.
The loop points are designated by notches along the phrase.

The first time Venues is started, it will ask the user which MIDI synthesizer they
would like to use (this is dependent on the hardware in the computer). This is stored
as a preference. The user can change synthesizers at any time. Should Venues fail
to initialize the stored synthesizer, it will prompt the user to make another selection.
Each MIDI track has a MIDI channel and a MIDI patch (or instrument). Channels
are auto-managed (the MIDI standard supports 16 channels). If the user holds
down the Control key, the musical note is displayed (or, for the drum channel,
the drum type). Speed based input is accepted on MIDI tracks - this varies the
velocity of a phrase. However it is difficult to achieve the desired results, and so it
is toggleable. Speed based input has not been removed from Venues so that users
can experience this idea, but it is classed as an experimental feature and does not
work in a collaboration session (Venues automatically turns it off).

Venues supports 16 MIDI tracks and 32 audio phrases. The number of tracks has
been capped at 8 to provide a manageable interface.

Each phrase spawns its own PhraseThread which is controlled from Clock through
methods in Phrase. PhraseThread handles the audio processing and dispatching
for a specific phrase. If a phrase’s thread is busy, a user is notified by the relevant
phrase being greyed-out.

Control

Phrase creation is bound to the edges of the containing track. Phrases can be
duplicated (copied). Phrases can be dragged within a track. If a track is display-
ing its segmentations (bar/quantization markings) the user can, whilst dragging a
phrase, snap to the nearest quantization. Phrases can also be dragged from track

30 Implementation

to track (of any type). A phrase’s constituent Points can be manipulated in two
ways: points may be deleted using a rubber (an eraser), and points may be dragged.
Deleting the starting point of a phrase removes the phrase entirely. Phrases can
also be deleted by picking up a phrase (through dragging) and pressing a key. The
points that make up a phrase are not usually drawn - the user can toggle their
display for easier editing of phrases. If a user taps on a phrase starting point, they
hear a preview of the phrase. The user can undo any phrase manipulation - the
undo list is per-user, and is currently set to store 10 manipulations (though this is
an arbitrary restriction).

Phrases can be drawn past the edges of the track, however these are capped visually
(and audibly) at the limits of the track. This allows you to draw invisibly past the
limits of the track, and then through dragging the phrase, bring that detail back
into the track.

The sweeping bar can be directly manipulated. Whether the sweeping bar pro-
gresses is toggleable. Tapping a track will snap the sweeping bar to that position.
The sweeping bar can also be dragged in any direction. This enables the sweeping
bar to be used as a scrubber when it is moved through a phrase12. The sweeping
bar can also be thrown left or right - if the user is dragging the sweeping bar and the
mouse is not stationary when they release, the velocity of the mouse is transferred
to the bar. Physics then kick in and the bar accelerates/decelerates to the tempo
defined by the track. Manipulation of the sweeping bar like this is not a feature
regular software sequencers offer. It helps evoke play in the user as it is fun to throw
the sweeping bar around and hear what is produced. It also adds an element of
performance to Venues.

Should the sweeping bar intersect a phrase at more than one point, the value of the
attribute assigned is the highest point of intersection. The user is free to draw any
phrase they wish, however should they wish to transform the phrase to only that
which is read by the sweeping bar, Venues can Collapse the phrase. This uses a
geometric slicing algorithm, and is worth considering in more detail:

Collapse(Phrase p)
1 For all pairs of adjacent points within p:
2 do if proper intersection exist between two pairs
3 then Add point of intersection to separate array.
4
5 Add all intersection points to p.
6 For all pairs of adjacent points within p:
7 do Remove all points underneath the lowest point in the pair within slice.
8
9 Sort the remaining points in p by x.

10 Reposition the starting point to be the point with lowest x − coord.

Proper intersection testing is performed using left turn testing. The fact that the
line defined by the phrase is arbitrary means that no implementation quicker than
O(n2) exists. Collapse runs into problems when an overhang exists. An overhang
is caused when:

12The user hears the exact frame in the audio buffer underneath the sweeping bar. By moving
the sweeping bar through the phrase (or ‘scrubbing the phrase’) the user can reproduce the phrase
at varying speeds, directions, etc.

5.3. Implementation 31

1. The first point of a phrase is not the smallest x-point.

2. The last point of a phrase is not the greatest x-point.

3. The phrase snakes so that the bend of a curve is not either the smallest or
greatest x-point, and there exists more phrase below with smaller or greater
x-point.

Overhangs can be dealt with by projecting x-points of high y-values onto the next
highest y-value of the phrase (and creating a new point). However, the difficulty
comes in distinguishing which of these projected points is a valid point on the line
of greatest y, and which can be discarded. As the line is arbitrary, and can be
either clockwise or anti-clockwise, this is not a simple task. Even if we can isolate
the correct projected points, it is difficult to know how this point should be sorted
in relation to the other points. A correct collapse can be seen in figures 5.1, 5.2 and
5.3. Collapse produces accurate results except on overhangs, where an x-point is
not projected. In the time I allotted to Collapse, I could not devise a solution to
this problem. However, I devised an alternative.

 Figure 5.1: The dotted line shows the peaks that would be read
by the sweeping bar.

 Figure 5.2: Here we can see the intersection points and over-
hang point at the end of the phrase.

Figure 5.3: The final collapsed phrase.

Collapse2 is an O(n2) algorithm that produces exact results. It has a much larger
constant than Collapse, though there is no difference in perceived performance

32 Implementation

on modern hardware. Collapse2 is also a slicing algorithm, but each slice is only
one unit large.

Collapse2(Phrase p)
1 For each pixel in the width of p:
2 do Add point of highest y to separate array.
3
4 Replace all points in p with those in separate array.
5 For all pairs of adjacent points within p:
6 do Check gradient between two points.
7 if gradient is the same as the previous pair
8 then remove point.
9 Reposition the starting point to be the point with lowest x − coord.

Collapse2 generates a point for each pixel, and so the second half of the algorithm
(lines 5-8) removes all unnecessary points. The user can switch between these two
algorithms at will.

Venues supports input devices. A user may plug in a device, such as a joystick
or joypad, and use it as a replacement for the mouse. If the device a user plugs in
does not meet the requirements for a mouse replacement (two axis, three buttons)
it may be set up as an auxiliary device to control less important functions. Figure
selection and phrase starting points are scaled up to accommodate the differing
precision between devices. Should a user be using a device during collaboration,
figure selection and phrase starting points are scaled for every user to provide a
consistent interface across users.

Networking

The master server requests a refresh of information from each server every 20 sec-
onds. Should a server not have sent a refresh respond to the master server within
a minute, the server is removed from the master server listings. This situation may
come about if a server crashes (i.e., hardware failure) without managing to send its
‘server quitting’ message to the master server. The master server constantly out-
puts to a log file for easy monitoring. The master server runs completely separately
as its own application.

The master server address is specified in a file. If the master server is down, the
client is notified. The client may still directly connect to a server by specifying an
address. Once a client has received the list of servers, it pings all servers on the
list. The server responds with either a thumbnail picture of its current state13, a
user-defined logo, or no image. As servers return responses to the client, they are
added to the user’s ServerBrowser in real time. As servers are added, they are
sorted by round-trip-time. The user is able to filter servers if they are full, refresh
all servers, and specify a personal name and server password.

13Thumbnail creation is threaded, though the server’s GUI does pause for approximately 200ms
as it writes the pixel information to an array. Unfortunately this pause is unavoidable.

5.3. Implementation 33

lower upper %deviation prime

25 26 10.416667 53
212 213 0.113932 6151
213 214 0.008138 12289
219 220 0.000127 786433

Table 5.1: Displaying the closest lower and upper power of
two’s, and the deviation from the optimal middle of the two.

As client UserInputs arrive, they are added to a queue of inputs of type
QueuedInputs. The queue is then processed by the Clock thread at each tick.
This prevents client inputs getting lost should more than one arrive between each
tick. The queue’s implementation allows for concurrent access (so that the Client
may write new inputs to the queue whilst the Clock processes them).

Users can communicate to each other outside of the canvas using text through the
ChatDialog. Chat runs in its own thread, which is created when a user joins a
server. The chat display can be toggled on and off (whilst still receiving messages),
and when new chat messages are waiting unseen users are notified by a small on-
canvas icon.

Should a user try to load an audio file into a track during a collaboration session,
it is likely that not all clients will have the file. Venues offers the ability for the
user to send the file to all other clients in the background.

The server sends synchronization checks every five seconds to all clients. This packet
includes hash checks for the game state. Hash creation and checking is very fast14.
Should hash codes not match, the server synchronizes with all clients.

Java requires that hash codes are guaranteed to be equal if two objects are equal,
but are not guaranteed to be not equal if two objects are not equal. This creates
a problem whereby two unequal objects could potentially generate the same hash
code and collide - this would be an unacceptable situation for our synchronization.

We can reduce the possibility of collisions by deterministically generating our hash
using properties of the object. Using a specially selecting prime number as the base
for hashing minimizes clustering in hash tables (and hence reduces the possibility
of a collision over time during synchronization). Using a prime as far as possible
from the nearest two powers of two yields good results in practice [18]. We need to
consider the length of the hash code. Hash codes should be at least as large as the
square of the number of input messages. For a track, the number of input messages
is

tc + (p ∗ (f ∗ (2 ∗ n) + fc) + pc)

where p is the number of phrases, f is the number of figures, n is the number of
points, and tc, pc, fc are respective track, phrase and figure constants equalling the
sum of the specific object attributes to be hashed.

A hash length of 32bits allows for 65536 input messages. Assuming each phrase is
full and has 500 constitutent points per figure, this allows for

14Sub 1ms.

34 Implementation

b
√

232−8
5017 c = 13

thirteen phrases per track15. A 32bit hash code is not enough. A 64bit hash code
allows for

b
√

264−8
5017 c = 856082

a lot of phrases indeed, and is more than sufficient for Venues. A 64bit hash can
be used as a per-session hash rather than a per-track hash. If eight tracks are in
use (Venues’ imposed limit) then a 64bit hash allows for

b
√

264

8∗(8+(p∗5017))c = 1, p = b
√

264−64
8∗5017 c, p = 107010

83 times more phrases than would fit on an 800x800 canvas.

Other Operations

Users can save and load their compositions. If a user attempts to load a composition
that references files they do not have, they are prompted for alternatives. If the
server loads a composition, it is sent to all clients and loaded. Clients cannot load
a game. Clients and servers may save at any time.

Users may capture screenshots - these are stamped with the current date and time
and saved as PNGs.

Exceptions are handled by a custom exception handler which logs errors and advises
the user.

Internationalization

All information has been externalized and localized. The first time Venues is run,
it prompts the user to select a locale. This is then stored to file as a preference. The
user may change their locale at any time with immediate effect. Venues includes
a full French translation (excluding help).

Help

A user guide is included within Venues and is displayed as html. This is created in
a threaded dialog so that users may switch between the help dialog and the canvas
without restriction. The help system supports i18n and loads the current locale
when invoked.

15tc = 8, pc = 7, fc = 2

5.3. Implementation 35

Implementation Complete Diagrams

Figure 7 shows the structure of Venues post-implementation. We can see the follow-
ing major differences (discussed in the implementation) when compared with the
structure proposed in the specification:

• Audio processing has been threaded separately from GUI drawing and is per-
phrase in PhraseThread. This allows for one phrase to be busy, whilst the
GUI continues to draw and other phrases continue to be processed.

• All other key real-time subsystems are threaded separately from GUI drawing
and are contained within Clock. The GUI halts when Swing components are
overlayed and so threading is a necessity. It also separates the GUI from the
functional core - in effect this returns the system to a typical three-tiered
architecture model.

• UserInputs are queued before processing - these are stored as QueuedInputs.

• Each track has a ScreenSegment that defines and distributes the track’s can-
vas space.

• ServerBrowser provides a threaded server browser to the user. ServerDialog
provides a threaded dialog for server creation options.

• Chat provides a threaded chat interface for users.

• ColoursDialog provides colour scheme editing to the user.

• I18n provides internationalization support to the user.

• ScreenShot provides background threaded screenshot scaling and compres-
sion.

• ConsolePrintStream redirects console output to an internal message stream.

• HelpSystem and LinkFollower control the threaded help interface and hy-
perlink navigation.

Figure 8 shows thread creation internal to Venues and external to the environ-
ment. Method calls are simplified (for instance, the incoming call queryServer()
is handled by the Client thread before the MainThread creates a new ScreenShot
thread).

Figure 9 shows the major communications between client, server and master server.
The messages displayed are data-simplified and reduced to one message for each
operation (for instance, sending a server’s image totals many messages). When a
server is created, the listening client16 does not communicate with the server exter-
nally during connection at all (all messages are internal, we shortcut the process).

Figure 10 shows navigation around the GUI from the canvas. Components to the left
of centre are Swing elements, and components to the right are instrument/sequencer
functions.

16The client created automatically when a server is created - the client of the user who created
the server.

Chapter 6

Validation

Venues does not lend itself to simple validation. It is applet-based, highly graphi-
cal, and its output (audio) is not easily measurable. It is real-time, highly threaded
and distributed. The system is susceptible to race conditions, which are NP-hard
to predict statically [19] and virtually impossible to detect dynamically1.

Unfortunately, race conditions must be debugged by hand. However, other testing
methods were implemented to reduce the work load. As planned, JUnit test cases
(white box tests) were written for those features that could be easily determinis-
tically evaluated. These proved invaluable during network programming. When I
was implementing synchronization code I ran into a defect whereby the synchro-
nization check was failing consistently, but the test cases for synchronization were
passing successfully. The test cases allowed me to trust the synchronization code,
and instead directed me to investigate other areas where the problem may have
lain2.

JUnit test cases do not work well for GUI-intensive code. Defects related to the
way Venues looks on a particular graphics card or the way JOGL is handled
cross-platform cannot be easily tested using JUnit. JUnit works best for testing
programming logic. Similarly, whilst JUnit test cases can be used for networking
test simulations, they do not work well for real networking testing.

Functionality was regression tested throughout development. Low cohesion between
subsystems and comprehensive threading isolated regression testing. If the system
exhibited high cohesion, regression testing would have taken too much time and
would not have been feasible. To aid this process, JUnit cases were written to
monitor defects and ensure that fixes introduced were not subsequently broken.
This successfully tracks ‘fragile’ fixes3. Table 1 documents a subset of regression
tests.

Black box testing for Venues was a demanding task. The system contains close
to six hundred4 possible user functions (not including the master server). Table 2
documents a subset of black box tests.

1Every memory access would have to be examined.
2The problem actually lay with the client input queuing.
3A fix that no longer works if another change is made to the system.
4592. (50 functions per track x 3 track types x 3 modes (offline/server/client)) + (43 other

functions x 3 modes) + 13 miscellaneous mode specific.

37

38 Validation

User testing took place throughout the development of the system. This was neces-
sary to follow the ‘Frequent response-based revision’ principle of GUI development
(4.2). Features and changes forthcoming from this process included:

• Point rubber (eraser) and point dragger.

• Sweeping bar reverse.

• Depth selection (phrase attribute) sizes and timing suggestions.

• Point rubber and point dragger size and behaviour suggestions.

• Keyboard shortcut mapping.

Two points came up during user testing that are worth discussion. The first concerns
the method to select which phrase attribute we are changing. When first presented
with the selection, users instinctively click to select (when in fact they only need
hover). Without initial training, users objected to not having to click and suggested
that selection should work through clicking. However, once accustomed, the motion
became natural. To accommodate users who wish to click, a click at any stage of
depth selection will accelerate the process. The second point concerns content write
locks. One user suggested that they would like content write locks. After reasoning
with the user, I did not go back on my decision (discussed in the design (4.3)) and
did not refit Venues with content write locks.

Network testing deserves a special mention due to the environments in which the
system was developed. King’s College DCS labs have an internal software firewall,
which had to be disabled before any traffic could flow between machines. All DCS
traffic also flows through a proxy server, which blocks Venues’ port5. Similarly,
at my residence (in one of King’s College’s halls) almost all ports are blocked,
and policy does not allow ports to be opened. Recruiting enough PC’s outside of
restricted networks with which to test Venues was less an engineering problem
than a social one.

5Port 4660

Chapter 7

Evaluation

7.1 Technical Evaluation

Venues differs substantially from its initial design, in both scale and execution. The
project initially started as merely an instrument, with no specified collaboration
means or goals. The decision to turn Venues into a more featured sequencer
increased the design complexity of the system. During implementation a similar
shift in thread complexity occurred.

Whilst originally envisioned as occupying two threads of execution, the system
is now heavily threaded. When in a collaborative session, Venues occupies five
more threads than there are phrases. This was a necessary design change1, and
the benefits are immediately apparent to the user. Separating the GUI from the
functional core lowered cohesion and made the system easier to work with as more
subsystems were added.

The networking design did not change. Added features, such as user chat, sit happily
on top of the existing networking structure. Bandwidth usage was estimated to be
6kbps for mouse input. Table 7.1 shows the implemented use. OSC messages
have a 32 byte address pattern, and a 4 byte type tag. An OSC argument is
zero-padded to the nearest 4 bytes. OSC uses UDP as a carrier, which has a 28
byte header for IPv4 (48 bytes for IPv6). This gives us a value of 37.5kbps for 60
transmissions per second (note that the original estimate did not include keyboard
input or implementation-level overheads). We can clearly see that packet overheads
dominate usage. However, client inputs are only transmitted when necessary (up
to a maximum of 60 transmissions per second). Average use is difficult to estimate,
however we can use results from simulated collaboration (table 4) to plot a box and
whisker diagram (shown in figure 7.1) to demonstrate a five-number summary.

Regardless of real-world performance, there is clearly scope for optimization. On
a canvas 800x800, only 9 bits2 are required to represent an input’s axis, saving
3.2kbps. 10 bits will accommodate a canvas with a greater resolution than that of
most monitors (2047x2047). Similarly, 3 bits can be used to represent the mouse

1Given that Ess halts Processing’s draw() thread. A two-threaded design would pause the
GUI rendering when Ess was busy.

2Unsigned. 210 = 1024. 1− 210 = Σ all bits = 1023.

39

40 Evaluation

Input Bits

Device Pressed boolean 1
Device Button byte 8
X int 32
Y int 32
Key char 16
Key Code int 32
Key Pressed boolean 1

Total 122
+ zero padding 128
+ osc overhead 416
+ udp carrier 640

x 60 38400

Table 7.1: We can see how much bandwidth is actually used
per transmission. The input device is usually a mouse. The
key code is an identifier for non-ascii characters.

10 155

Figure 7.1: Values denote input messages per second. Me-
dian 10.2, Q1 8.7, Q3 13.5, Min. 4.6, Max. 16.3, Mean 10.72,
Std.Dev. 3.43.

buttons (as 3 bits gives 8 permutations3), saving another 0.2kbps. Adaptive Huff-
man coding would be suitably fast and inexpensive for real-time compression of the
entire OSC message and would improve the situation further.

If we compare these result to the best case alternative design (of transmitting audio
from a central server) we can see the implementation-level improvement. Assuming
audio is compressed using the excellent aacPlus4 codec, which features CD quality5

encoding at 48kbps (without overheads), Venues uses 65% of the bandwidth. When
we factor in average use (mean), Venues uses 12% of the bandwidth. This equates
to supporting 8 times the number of users. With the optimizations described and
average use, Venues would use 10.5% of the bandwidth.

Venues’ real-time performance can be evaluated by looking at the output frames
per second across different hardware. Table 7.2 demonstrates the results. As the
system uses OpenGL, graphics rendering performance is GPU dependent. The

38 permutations map to 3 mouse buttons as button presses are not mutually exclusive. If
presses were exclusive, we could use only 2 bits for 4 buttons.

4http://www.codingtechnologies.com/products/aacPlus.htm
516 bit, 44100Hz Stereo.

http://www.codingtechnologies.com/products/aacPlus.htm

7.1. Technical Evaluation 41

CPU GPU FPS (No AA) FPS (AA)

A64 3500+ nVidia GeForce 6800GT 64 64
P4HT 2.8GHz Intel 82865G 52 52
P4 2.8GHz Intel 82865G 49 49
P4 2.4GHz nVidia GeForce 2MX 42 42
K7XP 1.4GHz SiS 740 35 32

K7XP 1.4GHz (Java2D) SiS 740 17 14

Table 7.2: FPS is measured against a consistent 8 track, 16
phrase composition.

work assigned to the GPU is minimal, however AA is a hit to performance on older
hardware. We can see that Venues’ performance is CPU bound. Hyper-threaded
or multi-core CPUs naturally perform better than single-core CPUs due to the
threaded nature of the system.

Comparing alternative designs, rendering the same composition in Java2D on the
last machine in Table 7.2 produces 17fps with no AA, and 14fps with AA. Clearly
this would have been unacceptable, and the decision to hardware accelerate was
correct.

The Collapse algorithm runs in O(n2) time-complexity. The coefficient of n in
the implementation is 3, however as n is generally 50 < n < 200 the coefficient is in-
significant. Collapse2 also runs in O(n2) time-complexity, however it’s coefficient
is bound by the width of the canvas (currently 800). This is a significant difference,
even though it is not perceivable during execution. Collapse and Collapse2’s
implementations did not receive a large amount of development time. Whilst they
are still provably efficient6, they are implementation efficient in neither space nor
execution time.

Table 3 shows the results of metrics analysis for Venues. We can directly assess
the non-functional design (4.3) - low coupling is demonstrated by the low AC and
EC means, and high cohesion is demonstrated by the low LCOM mean. Of note
are the Nested Block Depth and McCabe Cyclomatic Complexity metrics. NBD
is self-explanatory, MCCC counts the number of flows through a piece of code
(branches and boolean operators) [20]. The high maximums in both Clock.run()
and NVI.draw(), whilst initially alarming, are caused by the Track/Phrase/Fig-
ure/Point structure. For each track, each phrase must be checked; for each phrase,
each figure must be checked; and so on. Further metrics analysis showed that for the
occasions where this structure must be traversed, we have high NBD and MCCC
counts. Only once we are at the Point level is any work conducted, and so for
analysis this traversal can be abstracted and ignored.

MCCC is known to artificially inflate method complexity when switches (or many
if/else statements) are used7. Discounting switches (such as those used in input han-
dling and network message passing) and abstracting traversal reduces the MCCC
metric fairly. We can see the adjusted metrics at the foot of the table. Whilst
still undesirable, the differences are considerable - particularly for MCCC. This
difference reduces Venues from the ‘moderate risk’ to the ‘without much risk’
categorization [20]. A better metric to have used is Essential Complexity8, which

6In that there does not exist an algorithm quicker than O(n2).
7A switch with 64 cases would have a complexity of 64, however the switch itself is not a

complex function nor is it difficult to understand.
8http://xsun.sdct.itl.nist.gov/HHRFdata/Artifacts/ITLdoc/235/chaptera.htm

http://xsun.sdct.itl.nist.gov/HHRFdata/Artifacts/ITLdoc/235/chaptera.htm

42 Evaluation

ignores structured programming primitives (such as switches).

7.2 Usability Evaluation

Venues’ GUI has been sectioned into a) the canvas (that which is hand-crafted
and rendered in OpenGL), and b) Swing components (that which would be time-
inefficient to hand-craft). An annotated composited screenshot of the canvas is
shown in figure 7.2. All bar one of the Swing components are accessible via a single
button press (as demonstrated in figure 10). By looking at the interface design rules
(4.2), we can evaluate how strictly these have been followed.

Mute (track)

Chat message
waitingCollaborative userGM patch instrument

Sweeping bar

Tempo

Track control
buttons

Depth
selected

Musical note
of position

Depth
selection that

has just opened

Quantization
lines

Frames per second

Figure 7.2: This screenshot has been constructed to show many
elements of the canvas GUI.

All application space (that isn’t a Swing component) is canvas space. Canvas items
(information, buttons) disappear when in the way, and only appear when neces-
sary. All sequencing tools are available either via the mouse or a keyboard button.
Everything necessary to create, modify and delete phrases is on the mouse. All
additional functions are not visible from the canvas. This behaviour follows the
first four rules exactly.

Screen density is not something that can be defined once9 - if the user wished to
draw phrases in all of the screen space, then the ratio of objects to screen space
would be 1:1. However, it could be said that a phrase’s object is its starting point,

9As is the case with typical windowed applications.

7.3. Environment Evaluation 43

in which case it is impossible that a density of 1 would occur10. Ratios closer to
1:10 or 1:20 are common.

Although the rules specify that the interface should be consistent on and off the
canvas (which it is), Venues would feel more closely integrated if all interface
elements were on the canvas (fading and sliding into view on invocation). This
would increase flow as the user’s concentration is not taken from one window to
another when performing secondary functions.

User testing brought up a point concerning intuitiveness over figure selection.
Whether this point is actually conditioning rather than intuitiveness is moot - the
important aspect is that the system provides reasonable results from which the user
can learn. It may be wise to add an interactive ‘trainer’ just for this situation, and
to prompt users should they attempt and fail to select a figure a number of times.

Speed based input using a mouse is not viable where accuracy is paramount. It is
not fulfilling, it is unpredictable and is ultimately frustrating. The mouse is a device
that can generate large acceleration values and is relatively imprecise for work that
is typically pen or brush based. Experimenting with a device more like a pen, such
as a tablet, may yield better results.

‘Flow’ and ‘play’ as concepts have no measure, and as such cannot be quantifiably
evaluated. Save from recruiting fifty volunteers for two weeks, the true test of
Venues’ interface will come when it is released into the wild. How quickly it can
be used to produce, and how enjoyable it is to use, will depend on how well I have
understood and applied these concepts.

7.3 Environment Evaluation

Working with Processing was both a joy and a pain. Processing enabled extremely
rapid development of GUI elements and input handling. Its OpenGL support,
whilst limited, was exactly what the project required, and was almost effortless to
integrate.

However, Processing’s BETA status is well deserved. Venues currently has four
major11 and four minor12 defects that are Processing related and require an update
to Processing. I am in communication with Processing’s developers to identify and
isolate these defects, and with the community to raise awareness and find ‘work-
arounds’, however as of now the problems are unavoidable and out of my hands.

10Circles do not tessellate.
11OpenGL text rendering; wave generation clicking; pitch buffer cut-off; applet embedding.
12Bezier curve fill; inconsistent startup; Ess busy halting; Ess loading external files.

Chapter 8

Conclusion and Future Work

8.1 Conclusion

Some students (and indeed some professionals) believe that Java, and Swing inter-
faces especially, are somehow inherently slow. Much of this belief can be accredited
to the misunderstanding of ActionListeners, where people nest work instead of
threading it. Whilst it is certainly the case that Java’s VM uses more memory
than native code, Java is not slow. I believe I have demonstrated that with careful
environment selection and effective use of threading, Java based systems can be
responsive.

OpenGL is an excellent API for rendering cross-platform due to the fact that
hardware vendors write platform-specific drivers. Observers of Venues have been
surprised at the speed and quality of rendering - this is OpenGL’s compliment.
JavaSound, being primarily a virtualized solution, has no such hardware-specific,
platform-specific drivers, and whilst it is a low-level1 API, performance is restricted.
JavaSound 1.5 implements optimized direct audio access through systems which of-
fer native hardware mixing2, however it exhibits compatibility issues and falling
back to a software mixer is necessary. JavaSound does have excellent MIDI sup-
port, though this would be expected for a 24-year-old standard.

OSC is very easy to work with. Once I had overcome the initial learning curve of
adjusting to a new protocol (not made any easier by some dubious documentation)
I had no problems to speak of. Throughput is excellent, and even though the
overheads are a little higher than straight UDP, it was much quicker to work with
- a great benefit for a project such as this.

Input passing is the most bandwidth efficient, highest quality audio producing
method of collaboration, where exact audio synchronization3 and exact audio out-
put4 are not required. Although bandwidth use is less than any of the proposed
alternative designs, and audio remains at CD-quality, significant gains should be
possible. It is clear that there is scope for future work in reducing traffic.

1In that it provides direct buffer access for manipulation, as used for wave tracks.
2Linux ALSA, Windows DirectSound, Solaris Mixer.
3All client’s hear output at exactly the same time.
4All clients hear the same output.

45

46 Conclusion and Future Work

8.2 Future Work

Venues was originally envisioned as being embedded in a piece of social software.
For this purpose the system runs as an applet. Creating a website around Venues
as a hub for musical collaboration would take significant work, and would be an ex-
cellent path upon which to extend requirement four (see 4.1). Many of the currently
windowed Swing components could be absorbed into the website. For instance, chat
could be dedicated its own space on the canvas page, and server creation/browsing
could be handled on page prior to the canvas.

It is de rigueur for websites not to create pop-up windows. Certain Swing elements
(which currently pop-up) would require hand crafting - synthesizer selection, in-
put selection, etc. This would also focus the attention of the user on the canvas,
rather than any additional windows or screens, increasing flow within the system.
Such complexity, such as that seen in visually dense file choosers, might warrant a
hierarchy of generalized canvas interface components.

An alternative direction for Venues is to become a more fully featured application
within the computer music domain. OSC support is a major step, and the ability
to act as a host for OSC devices and software would be a major boon - the system
would have to respond correctly to OSC query messages for all sequence affecting
functions. The fact that the system already generalizes input could make control
assignment quite simple, by providing users with a way to map device controls
to system inputs. A profiling system for devices and software, coupled with a
networked database of profiles (user uploadable) would streamline support.

Throughout the project I have been considering attempting to support VST in-
struments. With two months to go, I realized that it would not be possible as I
was sufficiently time-pressed with my existing workload. Writing a VSTi host is a
significant task made more complex because the SDK is written in C++. A wrap-
per, jVSTwRapper5, exists for VSTi development, however host development would
require significant porting. Although current MIDI support provides a wealth of in-
struments through internal patches, SoundBanks, and hardware extension (such as
Yamaha’s XG series), VSTi support would allow high-fidelity instrument synthesis,
both from samples and from simulation.

I am disappointed by how much bandwith Venues needs. Even if I’d had time
to conduct the work necessary to reduce bandwidth usage, packets would still be
massively overhead heavy. It should be possible to reduce the combined input
messages (keyboard and mouse) further, as table 8.2 shows. Although we could
only use 42 bits for input6, we cannot rely on compression to always reduce this to
32 bits - 4 byte zero-padding means that we might as well increase certain input
values to saturate the OSC argument (supporting twelve device input buttons, and
using 16 bits for a key code). We can do away with the boolean signifiers altogether
- the bits for the device buttons include every possible on/off combination for all
buttons, and unicode has an empty value which can signify no key press. The key
remains 16bits long for UTF-16. Splitting keyboard and mouse input would actually
make the situation worse, as overheads dwarf the message content.

5http://jvstwrapper.sourceforge.net/
63 bit button input, 9 bit axis input * 2, 16 bit key, 5 bit key code.

http://jvstwrapper.sourceforge.net/

8.2. Future Work 47

Input Bits

Device Button 12
X 10
Y 10
Key 16
Key Code 16

Total 64
+ zero padding 64
+ osc overhead 352
+ udp carrier 576

x 60 34560

A solution is to purposely de-synchronize and delay client input processing, similar
to how media is streamed. This allows us to bundle many inputs together, reducing
the effect of message overhead. Although UDP allows for packet sizes larger than
512 bytes, certain devices (e.g., routers) between client and server may not. 512
bytes allows for 448 bytes of content, which equates to 56 messages. Each client
then only requires 4096 + 274/1024 = 4.2kbps. This is a vast improvement, using 8
times less bandwidth with a latency of just less than a second.

We could exploit the inherent latency between clients and calculate how many input
messages can be bundled. A 200ms latency (typical for a 56k modem) would allow
12 input messages to be bundled without any loss in perceived responsiveness. Each
packet would then be 1280 bits long, sent five times a second, and each client would
require 6.25kbps of bandwidth. This is an excellent result - a 56k modem user could
support 4 clients with no perceived latency. This would be a marked improvement
on the current implementation, which requires 150kbps to support 4 clients. The
assumption that latency decreases with bandwidth is not necessarily true, but is
often the case. If we made this assumption, we could implement a dynamic latency-
based message bundling system. Users with lower latency (and more bandwidth)
would then also perceive no loss in responsiveness.

Bibliography

[1] S. Boyd. Are you ready for social software? 2003. http://www.darwinmag.
com/read/050103/social.html.

[2] J. Grudin. Cscw: History and focus. 1994. http://www.ics.uci.edu/

~grudin/Papers/IEEE94/IEEEComplastsub.html.

[3] J. Hempel and P. Lehman. The myspace generation. BusinessWeek, 2005.
http://www.businessweek.com/magazine/content/05_50/b3963001.htm.

[4] M. L. Markus and T. Connolley. Why cscw applications fail: Problems in the
adoption of interdependent work tools. In Proceedings of the Conference of
CSCW, pages 371–380, New York, NY, 1990. ACM.

[5] T. Brinck. Groupware design issues. 1998. http://www.usabilityfirst.
com/groupware/design-issues.txt.

[6] John Carmack. Keynote speech. In Game Developers Conference. GDC, 2004.

[7] S. Critchley. I want less and im willing to pay for it. 2005. http://oreillynet.
com/pub/wlg/6757.

[8] T. Bray. Things that just work: Subethaedit. 2005. http://tbray.org/
ongoing/When/200x/2005/03/14/Sub-Etha-Edit.

[9] Golan Levin. Painterly interfaces for audiovisual performance. Master’s thesis,
Massachusetts Institute of Technology, 2000. http://acg.media.mit.edu/
people/golan/thesis/.

[10] M. Slaney. Pattern playback from 1950 to 1995. In Man and Cybernetics
Conference, Vancouver, Canada, 1995. IEEE Systems.

[11] Scott W. Ambler. User interface design tips, techniques, and principles. 2006.
http://www.ambysoft.com/essays/userInterfaceDesign.html.

[12] Larry L. Constantine and Lucy A.D. Lockwood. Usage centered design. 2003.
http://www.foruse.com/.

[13] Larry L. Constantine and Lucy A.D. Lockwood. Software for Use: A Practical
Guide to the Models and Methods of UsageCentered Design. Addison-Wesley
Professional, 1999.

[14] Randolph G. Bias and Deborah J. Mayhew. Cost-Justifying Usability. Morgan
Kaufmann, second edition edition, 2005.

[15] Scott W. Ambler. User interface prototyping. 2006. http://www.ambysoft.
com/essays/userInterfacePrototyping.html.

49

http://www.darwinmag.com/read/050103/social.html
http://www.darwinmag.com/read/050103/social.html
http://www.ics.uci.edu/~grudin/Papers/IEEE94/IEEEComplastsub.html
http://www.ics.uci.edu/~grudin/Papers/IEEE94/IEEEComplastsub.html
http://www.businessweek.com/magazine/content/05_50/b3963001.htm
http://www.usabilityfirst.com/groupware/design-issues.txt
http://www.usabilityfirst.com/groupware/design-issues.txt
http://oreillynet.com/pub/wlg/6757
http://oreillynet.com/pub/wlg/6757
http://tbray.org/ongoing/When/200x/2005/03/14/Sub-Etha-Edit
http://tbray.org/ongoing/When/200x/2005/03/14/Sub-Etha-Edit
http://acg.media.mit.edu/people/golan/thesis/
http://acg.media.mit.edu/people/golan/thesis/
http://www.ambysoft.com/essays/userInterfaceDesign.html
http://www.foruse.com/
http://www.ambysoft.com/essays/userInterfacePrototyping.html
http://www.ambysoft.com/essays/userInterfacePrototyping.html

50 Bibliography

[16] Charles M. Kozierok. Theoretical and real-world throughput, and factors af-
fecting network performance. 2005. http://www.tcpipguide.com/free/t_
TheoreticalandRealWorldThroughputandFactorsAffecti.htm.

[17] Adrian Freed Matthew Wright and Ali Momeni. Opensound control: State of
the art 2003. 2003. http://www.cnmat.berkeley.edu/Research/NIME2003/
NIME03_Wright.pdf.

[18] Aaron Krowne. Good hash table primes. 2002. http://planetmath.org/
encyclopedia/GoodHashTablePrimes.html.

[19] Robert H. B. Netzer and Barton P. Miller. On the complexity of event ordering
for shared-memory parallel program execution. In International Conference on
Parallel Processing, pages II93–II97, 1990.

[20] Edmond VanDoren. Cyclomatic complexity. 2000. http://www.sei.cmu.edu/
str/descriptions/cyclomatic_body.html.

[21] K. H. Burns. History of electronic and computer music. 2000. http://
eamusic.dartmouth.edu/~wowem/electronmedia/music/eamhistory.html.

[22] M. Czikszentmihalyi. Flow. S.O.S. Free Stock, 1991.

[23] U. Essler. Adoption of groupware. 1998. http://www.dsv.su.se/
publikationer/Rapporter-1998.html.

[24] Raymond Lewallen. Patterns and practices. 2005. http://codebetter.com/
blogs/raymond.lewallen/archive/2005/07/14/129236.aspx.

[25] Ian Sommerville. Software Engineering. Addison Wesley, seventh edition edi-
tion, 2004.

http://www.tcpipguide.com/free/t_TheoreticalandRealWorldThroughputandFactorsAffecti.htm
http://www.tcpipguide.com/free/t_TheoreticalandRealWorldThroughputandFactorsAffecti.htm
http://www.cnmat.berkeley.edu/Research/NIME2003/NIME03_Wright.pdf
http://www.cnmat.berkeley.edu/Research/NIME2003/NIME03_Wright.pdf
http://planetmath.org/encyclopedia/GoodHashTablePrimes.html
http://planetmath.org/encyclopedia/GoodHashTablePrimes.html
http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html
http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html
http://eamusic.dartmouth.edu/~wowem/electronmedia/music/eamhistory.html
http://eamusic.dartmouth.edu/~wowem/electronmedia/music/eamhistory.html
http://www.dsv.su.se/publikationer/Rapporter-1998.html
http://www.dsv.su.se/publikationer/Rapporter-1998.html
http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/14/129236.aspx
http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/14/129236.aspx

Appendix

User Guide

Venues includes online help, and so the user guide is not reproduced here. Once
Venues is running, press ‘F12’ for immediate key help, or ‘H’ for the user guide.
The user guide is presented as HTML, and may be viewed externally by accessing
venues/resources/help/$LANGUAGE$/$COUNTRY$/index.html.

Use Cases

Play Instrument: See 2.
Initiate Collaboration: The user can allow other users to collaborate in their session.
Kick User: The user can remove a particular user from the collaborative session (if
the user is the creator of the session).
Join Collaboration: The user can join a collaborative session.
Save Composition: The user can store the composition in some way - this may be
saving the file for later loading, or it may be outputting the audio data to a file. In
the first case, the user would also have the ability to Load Composition.

Create Phrase: The user can create a musical phrase to be played by the instru-
ment.
Modify Phrase: The user can modify the musical phrase. This is highly dependent
on the phrase representation - the representation should try not to restrict any po-
tential for modification.
Delete Phrase: The user can delete a created phrase.
Modify Instrument: The user can change the attributes of the instrument. If the
instrument were a tone, an example of this would be changing the frequency of the
tone.
Modify Environment: The user can change the attributes of the musical environ-
ment, such as the output volume.

51

52 Appendix

Play Instrument

Initiate Collaboration

Kick User

Join Collaboration

Save Composition

Figure 1: A Use Case outlining top-level behaviour for a user
acting as a server.

Create Phrase

Modify Phrase

Delete Phrase

Modify Instrument

Modify Environment

Figure 2: A Use Case outlining audio affecting commands.

Appendix 53

Phrase

Array Of Figures

Figure

Array Of Points

Point

float x

float y

int depth

Figure 3: The internal representation of a phrase.

0..*

1
has

0..1 1

0..8

0..1

has

0..*

1
has

0..1

1

has

String : address

ServerObject

ServerObject : servers

MasterServer

0..8

1

has

0..*1

has

1..* 1

has

1..*

1

has

0..*

1

has

Float : y

Float : x

Point

Point : points

Byte : depth

Figure

Float : volume

Float : pan

Figure : figures

Phrase

ShortInteger : mouseY

ShortInteger : mouseX

Boolean : mousePressed

Byte : mouseButton

UserInput

Integer : timebar

Integer : tempo

Boolean : mute

Track

Void :) (processLoop

Track : tracks

Server : server

UserInput : inputs

Client : client

MainClass

ServerObject : servers

String : server

Client

String : password

Client : clients

Server has

Figure 4: A class diagram demonstrating the proposed struc-
ture of the system.

54 Appendix

Get Client Inputs

[New Inputs?]

[true]

Process Input

Draw GUI

[false]

Process Audio

Get System State

[System Exit?]

[true]

[false]

Figure 5: A statechart demonstrating the main processes that
occur in each system tick.

Appendix 55

X

Main Thread Client Thread

returnInputs

processInputs

processLoop

drawGUI

processAudio

Server Thread

joinSession()

leaveSession()

X

joinSession()

connected

sendInput()

receiveInput

leaveSession()

leftSession

leftSession

sendInputs

sendAllInputs()

Figure 6: A sequence diagram demonstrating thread interac-
tion. The server thread could be running locally (in the case of
a listening server) or remotely.

56 Appendix

1
1

0
..
*

1

h
a
s

0
..
*

1

h
a
s

0
..
8

1
h
a
s

0
..
*

1

h
a
s

10
..
1 ru
n
s

1

p
t

0
..
1

p
a
re
n
tT
ra
c
k

0
..
1

p
a
re
n
tF
ig
u
re

0
..
1

tr
a
c
k
O
fM
o
u
s
e

0
..
n

c
lie
n
tI
n
p
u
ts

1

s
s
g

1

p
a
re
n
tP
h
ra
s
e

co
lla

p
se

d

co
lla

p
se

d

S
e
rv

e
rO

b
je

ct

co
lla

p
se

d

co
lla

p
se

d

Q
u
e
u
e
d
In

p
u
t

co
lla

p
se

d

co
lla

p
se

d

I1
8
n

co
lla

p
se

d

co
lla

p
se

d

C
o
lo

u
rs

D
ia

lo
g

co
lla

p
se

d

co
lla

p
se

d

S
cr

e
e
n
S
e
g
m

e
n
t

co
lla

p
se

d

co
lla

p
se

d

U
se

rI
n
p
u
t

co
lla

p
se

d

co
lla

p
se

d

S
cr

e
e
n
sh

o
t

V
o
id

 :

)
 (

p
ro

ce
ss

S
w
e
e
p
in

g
B
a
r

V
o
id

 :

)
 (

p
ro

ce
ss

In
te

rs
e
ct

io
nV
o
id

 :

)
 (

p
ro

ce
ss

In
p
u
t

V
o
id

 :

)
 (

p
ro

ce
ss

A
n
im

a
ti
o
n
C
lo

ck

co
lla

p
se

d

C
lo

ck

co
lla

p
se

d

co
lla

p
se

d

F
ig

u
re

co
lla

p
se

d

co
lla

p
se

d

P
h
ra

se

V
o
id

 :

)
 (

p
ro

ce
ss

A
u
d
io

co
lla

p
se

d

P
h
ra

se
T
h
re

a
d

co
lla

p
se

d

co
lla

p
se

d

C
lie

n
t

co
lla

p
se

d

S
y
n
cC

h
e
ck

V
o
id

 :

)
 (

d
ra

w
G
U
I

V
e
n
u
e
s

co
lla

p
se

d

co
lla

p
se

d

S
e
rv

e
r

co
lla

p
se

d

co
lla

p
se

d

T
ra

ck

co
lla

p
se

d

co
lla

p
se

d

C
h
a
t

co
lla

p
se

d

co
lla

p
se

d

C
o
n
so

le
P
ri
n
tS

tr
e
a
m

co
lla

p
se

d

co
lla

p
se

d

S
e
rv

e
rD

ia
lo

g

co
lla

p
se

d

co
lla

p
se

d

S
e
rv

e
rB

ro
w
se

r

co
lla

p
se

d

co
lla

p
se

d

P
o
in

t

0
..
1

p
a
re
n
tP
h
ra
s
e

1

0
..
*h
a
s

co
lla

p
se

d

co
lla

p
se

d

H
e
lp

S
y
st

e
m

h
a
s

co
lla

p
se

d

co
lla

p
se

d

L
in

k
F
o
llo

w
e
r

Figure 7: A class diagram demonstrating the implemented
structure.

Appendix 57

Clock

Top Package::User

new Clock()

MainThread

new PhraseThread()

PhraseThread

Venues

JavaSound Dispatcher

processAudio()

Client

new Client()

Draw Phrase

Join Session

Start Venues

initOSC()

queryServer()

joinServer()

sendInput()

OpenSoundControl

new ServerBrowser()

ServerBrowser

Create Session

Client

new Client()

initOSC()

queryServer()

joinServer()

sendInput()

OpenSoundControl

Server

new Server()

initOSC()

serverInfo()

echoInputs()

OpenSoundControl

Take ScreenShot

ScreenShot

new ScreenShot()

queryServer()

ScreenShot

new ScreenShot()

OpenSoundControl

new Chat()

Chat

new Chat()

Chat

new ServerDialog()

ServerDialog

Figure 8: A sequence diagram demonstrating thread creation
and use within Venues and outside.

58 Appendix

Master Server Server MainThread Client Master Server

new Client()

getServers()

sendServers()

new Server()

MainThread

announceUp()

refreshRequest()

refreshInfo()

stop()

announceDown()

tidyServers()

X

refreshServers()

queryServer()

sendImage()

sendDetails()

joinServer()

sendState()

sendInput()

sendInput()

syncCheck()

syncResponse()

syncCheck()

stop()

clientLeft()

sendInputs()

{if server not refreshed in 60 seconds

then remove server}

every 20 seconds

every 16ms

every 5 seconds

X

sendState()

{if sync check fails}

Figure 9: A sequence diagram demonstrating the major com-
munications between client, server and master server.

Appendix 59

Keyboard Button

K
e
y
b
o
a
rd

 B
u
tt
o

n
L
is

t
S

e
le

c
ti
o
n

Keyboard Button

K
e
y
b
o
a
rd

 B
u
tt
o
n

C
a
n
va

s
 B

u
tt
o
n

Canvas Input

Keyboard Butto
n

Canvas Button

Canvas Input

Canvas Input

Keyboard Button

Keyboard Button

Keyboard Button Key
bo

ar
d

But
to

n

Server

Browser

Select Locale

New Track

New Phrase

Delete Phrase

Modify Phrase

Save/Load

Server

Creation

Select Input

Device

Delete Track

Modify Track

Edit Colour

Scheme

Choose Colour

Scheme

K
e
y
b
o
a
rd

 B
u
tt
o

n

Collapse

Phrase

Select Synth

K
e
y
b
o
a
rd

 B
u
tto

n

Canvas

Keyb
oard

 B
utto

n

Chat

Figure 10: A flow diagram demonstrating functional naviga-
tion. Components to the left of centre are Swing elements, and
components to the right are instrument or sequencer functions.

Previously Failed
Test

Previous Outcome New Outcome Action
Required

Draw a phrase onto
another track.

Phrase crosses
boundary.

Phrase is bound. No.

Draw a phrase out-
side the canvas.

NullPointerException:
trackOfInput is null.

Phrase is bound. No.

Draw a phrase on top
of another.

Two phrases are cre-
ated.

Cannot draw new
phrase

No.

Draw a phrase whilst
no tracks exist.

A phrase is created in
memory but not on
the canvas.

No drawing is possi-
ble when no tracks ex-
ist.

No.

Draw a file track
phrase.

Phrase drawing is x &
y even though pitch
does not vary with y.

Drawing is limited to
x only.

No.

Table 1: A table showing a subset of the regression testing
process, concerning the drawing of phrases.

60 Appendix

Test Result

F1: Show message output. Toggles message output. Output slides in and out of
view.

F2: Show FPS. Toggles FPS display in top-right.
F3: Show points. Toggles showing of points on phrases.
F4: Select input. Dialog appears containing devices. Current device is

selected.
F5: Save. File chooser appears with filter.
F6: Client. Server browser appears. When in session, client op-

tions appear.
F7: Server. Server dialog appears. When in session, server options

appear.
F8: Load. File chooser appears with filter. If client in session,

information dialog appears informing user that client
cannot load whilst in session.

F9: Select colour scheme. Dialog appears with list of schemes. Current scheme
is selected.

F10: Select locale. Dialog appears with list of locales. Current locale is
selected.

F11: Take screenshot. Screenshot appears in ‘screenshots’ folder date
stamped.

F12: Show key help. Toggles key help. Key help slides in and out of view.

Table 2: A table showing a subset of the black box testing
process, concerning the functions bound to the F-keys.

Metric Total Mean S.D. Max. Location

Lines of Code 9435
Method Lines of Code 7463
Nested Block Depth 1.68 1.376 12 Clock.run()
Lack of Cohesion of Meth-
ods

0.364 0.406 1.006

McCabe Cyclomatic
Complexity

5.242 18.595 214 NVI.draw()

Afferent Coupling 2.25 2.773 7
Efferent Coupling 4.25 3.345 8
Instability 0.55 0.36 1

Adjusted Nested Block
Depth

1.518 0.949 7 Server.sState()

Adjusted McCabe Cyclo-
matic Complexity

2.279 2.895 24 NVI.load()

Table 3: Metrics. Values in bold are undesirable.

Appendix 61

Run Time (seconds) Number of Input Messages

1 600 8108
2 600 2754
3 600 9785
4 600 4822
5 600 5644
6 600 8629
7 600 5218
8 600 6447
9 600 5792
10 600 7145

Table 4: Simulated Collaboration Results.

62 Appendix

Execution Instructions and Notes

Due to a bug in Processing that stops the launching of applets (that use OpenGL)
in a browser, it is not as simple as it should be to launch Venues. A fix for this
bug was released just two weeks before completion, but integrating the fix is not a
simple task and updating to the latest version breaks existing functionality.

I will be working to update Venues to launch from a browser in the future. Un-
fortunately, for now, it is necessary to jump through one or two hoops. I apologize
for this inconvenience. To compensate somewhat there are video and audio files of
Venues in action included on the CD.

As mentioned at the end of the evaluation (7), along with this bug there exists
another two (also Processing related) that are immediately apparent and hence are
worth mentioning here. The first is that text renders inconsistently, and is difficult
to read. The second is that Ess induces clicks at the end of wave generation. This
causes wave phrases to sound ‘dirty’ or ‘poppy’. To reduce this effect the width of
buffer quantization has been increased. You may notice that wave phrases are slow
to respond to sudden changes in direction - this is the cause.

If there are any questions or problems please do not hesitate to contact me at
james.tompkin@gmail.com.

On Windows

The easiest way to launch Venues is to load it from within an IDE, such a Eclipse,
and run the NVI class as an applet. Importing the Venues folder should be sufficient,
as project files are included.

On Linux and Mac

Similarly, importing into an IDE is the easiest way. However, there exists a further
complication. Library files that load from bin on Windows do not load on Linux,
and so these must be placed either in JRE/bin or a system bin and added to the
CLASSPATH. The cross-platform library files can be found in bin, and are stored
as backup in bbin.

Master Server

The master server can be run by executing vms.bat from within Executable/
Venues Master Server. The master sever can also be run by executing
VenuesMasterServer.jar from the same folder, however in this case it will not
run with a console and the only output will be to a log. The master server must
run on a separate machine. If this is difficult, forgo use of the master server and
specify the ip address of the server you wish to connect to. This process is outlined
in the Collaboration section of the user guide.

Program Listings

63

Appendix 65

I verify that I am the sole author of the programs contained in this folder, except
where explicitly stated to the contrary.

Signed,

Date:

Venues 67

Venues

core

ChatDialog provides the user with a Swing interface for chat during a collaboration
session.

Client handles client-side networking, such as input sending.

Clock keeps track of animation, input and sweeping bar clocks. It also calculates
sweeping bar/phrase intersection.

ColoursDialog provides the user with an interface for changing all the colours used
in Venues.

ConsolePrintStream handles redirection of System.out. NVI handles the display of
this stream.

Figure contains a set of Points and has a depth.

I18n handles i18n duties such as string fetching from a .properties file. I18n selection
is handles by NVI.

NVI is the main class and renders the canvas. It contains mutex objects for all
threads, acts as a router for network messages, handles input, saving and loading,
and does everything that isn’t easily placed elsewhere.

Phrase is a phrase on the canvas, consisting of five figures. Phrase also contains
the two collapse algorithms.

PhraseThread processes and dispatches all audio tasks for its relevant Phrase.

Point is a point on the canvas, usually part of a figure but it could also be a starting
point of a phrase (stored in Track).

QueuedInput is an object representing a client’s input. These are added to a con-
current queue in UserInput.

ScreenSegment defines the screen area a track occupies, and includes timers to
regulate fading.

Screenshot scales and compresses a screenshot in a background thread.

Server handles server-side networking such as echoing, and server tasks such as
tallying for various features.

ServerBrowser creates a Swing component that is displayed when a user wishes to
connect to a collaboration session. Handles real-time display of incoming servers.

ServerDialog creates a Swing component that is displayed when a user creates a
server.

68 Appendix

ServerObject is an object internally representing a server, as used by a client.

Tools provides static methods to perform a variety of tasks, including such geometric
standards as leftTurn() and properIntersection(). It also provides static HashMaps
for musical notes, drums, and GM patches.

Track contains all information that defines a track, including a track’s ScreenSegment.
It also includes methods for starting and adding to phrases.

UndoObject is an object containing every piece of information necessary to undo a
phrase manipulation.

UserInput contains all user controls, counters and options. It contains an input
queue, an undo list, and methods to add and remove from these data structures.

VenuesException provides three custom exception handling methods that present
the user with a dialog and also print the error to a file for easy problem solving.

filefilters

FileTypeFilterAIFF filters files by type AIFF in file choosers.

FileTypeFilterAU filters files by type AU in file choosers.

FileTypeFilterMP3 filters files by type MP3 in file choosers.

FileTypeFilterNVI filters files by type NVI in file choosers. NVI is the extension of
Venues’ save format.

FileTypeFilterSounds filters files by all supported sound extensions in file choosers.

FileTypeFilterWAV filters files by type WAV in file choosers.

help

HelpSystem constructs a help dialog and renders html pages within using an
HTMLEditorKit.

LinkFollower handles hyperlink navigation within the help dialog.

Venues Master Server 69

tests

TestForBootUp tests for successful boot.

TestForFigureHashCode tests figure hash code validity.

TestForPhraseHashCode tests phrase hash code validity.

TestForPointHashCode tests point hash code validity.

TestForScreenSegment test for screen segment validity.

TestForTrackHashCode tests point hash code validity.

TestForUserInput test for user input validity.

Venues Master Server

MasterServer runs as an application. It creates a master server, schedules server
refreshes, tidies servers, and outputs to a log.

ServerObject is an object internally representing a server, as used by the master
server.

	Originality Avowal
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 Collaboration
	2.2 Audio

	3 Review
	3.1 SubEthaEdit
	3.2 ArtPad
	3.3 The Fridge
	3.4 Just Letters
	3.5 GarageBand
	3.6 YellowTail

	4 Specification and Design
	4.1 Requirements
	4.2 Functional Specification
	4.3 Design
	4.4 Structural Specification
	4.5 Behavioural Specification

	5 Implementation
	5.1 Development Environment
	5.2 Development Model
	5.3 Implementation

	6 Validation
	7 Evaluation
	7.1 Technical Evaluation
	7.2 Usability Evaluation
	7.3 Environment Evaluation

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Work

	Bibliography
	Appendix
	Program Listings
	Venues
	Venues Master Server

