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Abstract

When learning functions on manifolds, we can improve per-
formance by regularizing with respect to the intrinsic manifold
geometry rather than the ambient space. However, when regu-
larizing tensor learning, calculating the derivatives along this
intrinsic geometry is not possible, and so existing approaches
are limited to regularizing in Euclidean space. Our new method
for intrinsically regularizing and learning tensors on Rieman-
nian manifolds introduces a surrogate object to encapsulate the
geometric characteristic of the tensor. Regularizing this instead
allows us to learn non-symmetric and high-order tensors. We
apply our approach to the relative attributes problem, and we
demonstrate that explicitly regularizing high-order relationships
between pairs of data points improves performance.

1. Introduction
Learning tensors from data has many applications in function

learning. Regression, classification, and clustering pose the func-
tion as a zeroth-order tensor; vector field learning poses the vec-
tor as a first-order tensor [41, 35]; and metric or covariance learn-
ing pose the metric as a symmetric second-order tensor [39, 37].

The generalization performance of the learned tensor h
depends crucially on how it is regularized—how the spatial
smoothness of h is enforced. In many problems, data lie on
low-dimensional manifolds [29, 25, 32], for which it helps
to regularize h with respect to the intrinsic geometry of the
data generating manifoldM: to enforce smoothness alongM
rather than in the ambient (Euclidean) space on which M is
embedded. This has shown improvement for semi-supervised
learning, and spectral embedding and clustering [36, 3, 6].

While Stokes’ theorem allows us to perform intrinsic regu-
larization of zeroth-order tensors (functions) on manifoldsM ,
extending this idea to higher-order tensors is not straightforward:
as M itself is not directly observed, calculating the covariant
derivatives—the derivatives alongM—is not possible. Thus, ex-
isting tensor regularization approaches are limited to the special
case of Euclidean space [35, 30, 11, 12], the solutions to which
cannot be simply applied to general manifold-structured data.

We present a method to intrinsically regularize and learn ten-
sors on Riemannian manifolds. As manifolds are not directly ob-

served in practice, our strategy is to introduce a surrogate object—
a kernel function—that encapsulate the geometric characteristic
of the tensor. We estimate this kernel function from a point
cloud sampled fromM , and regularize this instead. In contrast
to existing approaches for intrinsic tensor regularization which
can only learn symmetric positive definite tensors [18], we can
learn general non-symmetric tensors and high-order tensors.

To help the novice reader, our supplemental material
provides an introduction to regularization on Riemannian
manifolds, compares Euclidean and manifold regularization,
and discusses the challenge of regularizing tensors directly.

1.1. Application to relative attribute ranking.

We demonstrate our approach by learning a linear ordering,
which can be defined by specifying pairwise relations between
all data points, and can be represented by a second-order
anti-symmetric tensor.

Problem description. Binary labels which describe the
presence or absence of image objects or attributes are often
insufficient for many tasks [20, 40]. Imagine shopping for
shoes: there is no clear boundary between ‘pointy’ and ‘not
pointy’ shoes even though it is easy for a human to state that
one shoe is ‘pointier’ than another. Thus, measuring relative
attributes [28] broadens attribute-based image analysis to
abstract and non-categorical labels.

This is accomplished by asking users to describe the relation-
ship between pairs of data points, either as equal or with an order
(greater/less than): image x(i) and x(j) share the same amount
of attributeA; or, x(i) exhibits a stronger/weaker presence of at-
tributeA than x(j). While Parikh and Grauman focus on binary
classification [28], the technique can be thought of as implicitly
introducing a linear ordering to a dataset for a given attribute:
an ordering function f is learned such that f(x(i)) > f(x(j))
implies that the rank of x(i) is higher than that of x(j).

Relation to existing techniques. Rank learning relates to
the classical data retrieval problem of matching a query to a
database (Agresti [1] and Liu [24] survey the field). While
data retrieval is framed as the binary attribute problem of
splitting matches from non-matches, constructing a perfect
binary classifier is challenging. As such, it is commonly solved
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as a ranking problem where each database entry is assigned a
continuous rank score representing its relevance to the query.
This can be formulated as a regularization problem: Given a
set of training labels relating a query to its matches, identify
a ranking function f which trades supervised training error
with a regularization energy functional measuring the (inverse)
smoothness of f (a zero-th order tensor). Existing regularization
approaches for ranking can be interpreted as saying “if two data
points x and y are similar, then their rank scores f(x) and f(y)
with respect to a query data point should be similar.”

In relative attributes problems, no query data point is ever
presented as the goal is to learn a linear ordering—that we have
learned the attribute ’shoe pointedness’ through pairwise com-
parison says nothing about the kind of shoe we desire. Thus, all
pairwise comparisons are important. Current relative attribute
approaches use standard ranking algorithms from classical data
retrieval to learn f , e.g., RankSVM, a support vector machine
with a rank loss [14, 16, 5], or deep neural networks [38]. Their
corresponding regularizers only enforce smoothness on the
underlying ranking function f , i.e., with respect to a specific
query point, and so they do not directly capture/propagate the
relative comparisons of all pairwise points. These pairwise
relationships can be represented as a second-order tensor, but
this requires the ability to regularize such a structure.

Our approach. We explicitly model the full pairwise relation-
ships by learning a second-order anti-symmetric tensor (kernel)
that directly expresses the rank relationships. Given the kernel
structure, our new regularization energy can be interpreted as
saying “if two data points x and y are similar, then their rank
scores f(x) and f(y) with respect to all data points should be
similar.” Due to the high time and memory complexities of
modeling all pairwise relationships, our approach is not directly
applicable to large-scale problems. Therefore, we also presents
an efficient low-rank approximation of the full kernel-based
ranking algorithm. Further, we present a simple algorithm to
convert the learned kernel into a linear ordering along with an in-
tuitive explanation based on the ranking of graph-structured data.

While enforcing smoothness on the ranking function f
implicitly enforces smoothness on all pairwise evaluations, our
approach conjectures that explicitly enforcing smoothness on
pairwise evaluations can help. This is motivated by the effec-
tiveness of high-order derivative-based function regularization:
Enforcing the smoothness of f by penalizing only its first-order
derivative norm implicitly penalizes all high-order derivative
norms, as the only null space of this norm is constant functions
which have zero high-order derivatives. Nonetheless, the use
of high-order regularizers is strongly supported by empirical
performance (e.g., Thin-plate energy). Our main contribution
is to demonstrate that adding this apparently-redundant explicit
control over the regularization of all kernel evaluations can
improve performance over existing regularizers.

2. Tensor regularization
To begin, we present a general framework for tensor regular-

ization on manifolds, from which we derive our kernel-based
ranking algorithm (KR) as its discretization. Our exposition will
focus on symmetric and anti-symmetric second-order tensors,
as used in metric learning and rank learning applications. Our
supplemental material shows how this can be extended to higher-
order tensors. We will use standard results from Riemannian ge-
ometry; we refer readers to our supplemental material for a brief
introduction to vectors and tensors on Riemannian manifolds,
and to more substantial texts [17, 22]. Readers interested only
in the algorithmic aspects of our approach may jump to Sec. 3.

2.1. Tensor regularization (direct case)

The Harmonic energy of a smooth function f ∈ C∞(M) (a
zeroth-order tensor) on a compact Riemannian manifold (M,g)
with metric g is obtained by integrating the squared norm of
the gradient vector∇gf overM :

EH(f) :=

∫
M

‖∇gf(x)‖2gp(x)dV (x) (1)

= −
∫
M

f(x)[∆pf](x)dV (x), (2)

where dV is the volume form of g, p is a probability density of x
onM , ∆p is the density p-weighted Laplace-Beltrami operator
∆p := 1

p(∇g)∗p∇g, and Eq. 2 is obtained by applying Stokes’
theorem onM . Here, EH measures the first-order variation of f
as weighted by p. This energy is commonly used in regularizing
functions, e.g., in semi-supervised learning and spectral cluster-
ing and embedding. Once the regularization energy onM is de-
fined, learning a function f is facilitated by combining it with the
training error functions (e.g. ranking losses lP and lO; Eq. 14).

In general, taking a derivative of a tensor increases its order
by one: The derivative of function f is a vector, a first-order
tensor. Similarly, the derivative of a second order tensor h is
a third order tensor ∇gh. Generalizing the norm structure in
Eq. 1 to third or higher-order tensors is straightforward given
g (see supplemental Sec. 1). Based on these structures, we can
extend the harmonic energy to tensors:

EH(h) :=

∫
M

‖∇gh(x)‖2gp(x)dV (x). (3)

Then, we can learn a tensor h on manifolds by trading EH
with the training error defined on the tensor evaluations. For
instance, for metric learning, the measured distances induced
by the metric between a pair of sampled points should be large
if the line or geodesic joining them is orthogonal to the class or
cluster boundary directions, while the distance should be small
when the line is parallel to the boundaries.

When the manifold (M,g) is explicitly given, calculating the
tensor harmonic energy EH is straightforward (Eq. 3). Calculat-
ing∇gh of h requires estimating the Christoffel symbols, which



requires observing g directly. However, in practical applications,
we do not have access to the manifold or g. Instead, we ob-
tain a sampled point cloud X = {x(1), . . . ,x(n)} as a subset
of the ambient space Rm (i.e., ı(M) ⊂ Rm with ı being an
embedding), which does not allow us to explicitly evaluate∇gh.

For the special case of the zero-th order tensor f , Stokes’
theorem (Eq. 2) allows us to calculate the harmonic energy
without having to explicitly evaluate ∇gf: Calculating the
Laplacian ∆f is sufficient. This facilitates practical applications
as the graph Laplacian is available as a consistent estimate
of ∆ [3, 13]: As |X | → ∞, f converges to a function f on
M (f := f|X = [f(x(1)), . . . , f(x(n))]>) and, in this case,
the graph Laplacian regularizer corresponds to a sample-based
approximation of EH(f) [3, 13]:

C(M,g)f
>Lf → EH(f) as n→∞, (4)

where C(M,g) is a positive constant depending only on
(M,g). This result provides a theoretical justification of graph
Laplacian-based regularization approaches.

For higher-order tensors, even after applying Stokes’
theorem, the resulting object involves tensor derivatives and so
calculating the Christoffel symbols is unavoidable.

2.2. Tensor regularization (indirect case)

To regularize tensor h, we introduce an auxiliary function
H to encapsulate the behavior of h, then regularizeH instead.
Roughly, we will construct the functionH(p, q) as an integral
of h along the arc-length-parameterized geodesic joining p and
q. Once H is built, we can recover h by taking the derivative
ofH along the geodesic.

First, we use a local diffeomorphism structure between the
tangent space TpM of M at p and M: The exponential map
expp : Up ⊂ TpM →M is defined as:

expp(Y ) = γY (1), (5)

where γY is a geodesic that agrees with Y ∈ TpM at p, i.e.
γY (0) = p and [∂γY /∂t](0) = Y . The radius of the domain
Up of expp (called normal neighborhood in which expp is a
diffeomorphism) is always positive [22].

Using this diffeomorphism, one can define a distance
function that corresponds to the metric g. We will develop
surrogate functions for other tensors by extension, in particular
anti-symmetric tensors for ranking applications.

The squared distance between p and q ∈ exp(Up)
can be calculated as the squared length ‖Y ‖2g of vector
Y = exp−1(q) ∈ Up, which defines our surrogate function
Gp(q) := ‖Y ‖2g at p. In general, ‖Y ‖2g can be obtained as a
second-order Taylor series approximation ofGp(q).

With this identification, each functionGp is defined only at
a small neighborhood exp(Up). Now, to apply this construction
to learn a new tensor g, we extend the domain ofGp (andGp
for g) to the entire manifold. Actually, the local characterization

of {Gp} is sufficient to define the corresponding regularizer of
G and equivalently g, as the regularizers themselves are defined
only based on the local derivative evaluations (see Eq. 11).
However, we wish to fully exploit the potential supervision
information in learning a new tensor g: For instance, for metric
learning, a training label can relate a distinct pair of data points
p and q, i.e., q /∈ Up, e.g., “p and q belong to the same class
and should be close with respect to g”.

To extend the domains of {Gp}, we use the integration of
the metric along the geodesics {γ} joining p and q:

Gp(q) = inf
γ(0)=p,γ(a)=q

L(γ) (6)

L(γ) =

∫ a

0

g

(
∂γ(t)

∂t
,
∂γ(t)

∂t

)
dt. (7)

Now, a general distance function G : M × M → R+ is
simply defined asG(p, q) := Gp(q). This is precisely how the
Riemannian manifold M becomes a metric space [17, 22], as
it can be shown thatG satisfies the conditions of non-negativity,
symmetry, and triangle inequality. Further, given the distance
functionGp and a coordinate (x1, . . . , xd), restoring the metric
tensor g at p is straightforward: By evaluating the distance
between p and each element in {q(1), . . . , q(k)} ⊂ exp(U)
(k ≥ (d+ 1)d/2), one can calculate the corresponding lengths
of vectors Y (l) = exp−1(q(l)) =

∑
i y
i(l)∂/∂xi. This gives a

system of equations for the coefficients of g in local coordinates:

Gp(q) =
∑

ij=1,...,d

gijy
i(l)yj(l), for l = 1, . . . , k. (8)

A coordinate-independent way of reconstructing g from G is
to differentiate L(γ) with respect to t at a = 0 for the space of
geodesics {γ}. This provides a canonical way of reconstructing
the Riemannian structure from the metric space structure [27].
It also demonstrates that there’s no need to explicitly calculate
integrals over the geodesics as the metric g is characterized
entirely based on local behaviour of G. We adopt Eq. 8
to facilitate the g reconstruction when the manifold is only
indirectly observed based on a point cloud X .

This system should be solved exactly whenG is calculated
from g as above. Let us suppose that we are estimating a new
metric g (or any other symmetric positive definite tensor) on
(M,g), e.g., in metric learning applications. In this case, we
could construct the corresponding auxiliary function G(p, q)
and equivalently {Gp(q) ∈ C∞(M)} as an object to be regu-
larized. As before, using Stokes’ theorem, we can calculate the
Harmonic energy ofGp by using the Laplacian ∆gGp instead
of explicitly calculating∇gG or∇gg. OnceG is estimated, we
can restore g by constructing a least-square solution of Eq. 8.

Now, we apply this framework to an anti-symmetric tensor k
for ranking applications (Fig. 1). First we note that the (squared)
distanceG(p, q) between two data points p and q are defined as
an infimum of the length of geodesics joining p and q (Eq. 6).



Figure 1. Integrating the Riemannian metric g over the vector field ∂γ∗

of the shortest path γ∗ between p and q gives Riemannian distance
G(p, q). Integrating an anti-symmetric tensor k over γ∗ gives our
kernelK(p, q). K and k contain the same amount of information.

For a compact manifold, such a geodesic γ∗ always exists.1

Based on this minimal geodesic γ∗ = arg min(L), the surro-
gate functionK of an anti-symmetric tensor k is defined as:

K(p, q) = Kp(q) =

∫ a

0

k

(
∂γ∗(t)

∂t
,−∂γ

∗(t)

∂t

)
dt. (9)

Note the minus sign in the second argument of k. By construc-
tion,K(p, q) is antisymmetric. Furthermore, given the antisym-
metric functionKp, the corresponding antisymmetric tensor k at
p can be restored by simply taking the derivatives ofKp with re-
spect to t: Similarly to metric tensor case, k can be interpreted as
an evaluation ofK along an infinitesimally short path (a vector):
By construction,K is consistent with the local k evaluation inU :

k(X,Y ) = Kp(q), (10)

with exp(X) = p, exp(Y ) = q for infinitesimalX and Y .
Applying this to a set {q(l)}kl=1 (k ≥ (d−1)d/2) in a small

neighborhood of p, we obtain a system of equations similar to
Eq. 8. As noted, we do not directly observe the manifold (M,g)
but are provided with a sample X from ı(M,g). These linear
equations can be constructed based on Riemannian normal
coordinates, as estimated by applying the principal component
analysis to a local neighborhood of each data point x ∈ X [9].

Given the construction of a surrogate function Kp and K
accordingly, we now introduce our (surrogate function-based)
tensor harmonic energy:

EH(K) =

∫
M

∫
M

‖∇gKp(q)‖2gdV (p)dV (q). (11)

The interpretation of this energy is straightforward. At
each point q, the function Kp(q) = K(p, q) represents the
relationship between q and p. We enforce that, as q varies, the
functionKp(q) varies smoothly (the outer integral) and this has
to be the case for all points p ∈M (the inner integral).

Our tensor harmonic energy is constructed entirely based
on tensor evaluations and so it respects the intrinsic geometry of

1This is not the case for general non-compact manifolds. When
M = [0,1]2\(0.5,0.5) endowed with a Euclidean metric, the distance
between two points represented as (0,0) and (1,1) in canonical coordinates
is
√
2, but there is no geodesic of length

√
2 joining the two points.

M (equivalently, it is coordinate independent). An alternative
to this construction is to explicitly learn the latent Riemannian
structure of the data [34, 2]. These latent variable models enjoy
simple Riemannian structure once identified. However, they
limit generality as they assume that the data manifold admits
a global coordinate representation. In contrast, our discrete
approximation has complementary strength of better generality
as we assume no global coordinate chart.

3. Kernel-based ranking algorithm
We present a practical algorithm that uses a consistent

approximation of this energy. Suppose that we are given a
set of data points X = {x(1), . . . ,x(n)} ⊂ Rm, along with
pairwise inequality and equality relationships, respectively,
P = {(i, j)} andO = {(i, j)}, where (i, j) ∈ P implies that
the rank of i-th data point is higher than j-th data point (as
denoted as Rank(x(i)) > Rank(x(j))). Similarity, (i, j) ∈ O
means Rank(x(i)) = Rank(x(j)).

RankSVM (RS). In the original Relative Attributes
work [28], the desired ordering is obtained by applying an
ordering function f : Rm → R to X :

f(x) = w>x, (12)

where the parameter vector w is estimated as the minimizer
of the RankSVM (RS) energy functional [5, 28]:

ERS(w) =
∑

(i,j)∈P

lP (fi − fj) +
∑

(i,j)∈O

lO(fi − fj) + λ‖w‖2,

(13)

where λ is a hyper-parameter and fi = f(x(i)). The inequality
loss lP and equality loss lO are given respectively as

lP (a) = max(0,1− a)2 and lO(a) = a2, (14)

while other loss (or inverse likelihood) functions are also
possible. For all algorithms discussed in this paper, we use these
two loss functions. Therefore, the differences between these
algorithms lie only in the respective regularizers. This enables
to compare the performance of supervised and semi-supervised
learning approaches, and our new regularizer in the kernel-based
learning setting. In general, other losses can be adopted in all
algorithms compared in this paper (e.g., logistic loss [1]).

Semi-supervised RankSVM (SSR). This extension of
RankSVM can be obtained by replacing the ambient regularizer
(‖w‖2 in Eq. 13) with a manifold regularizer:

ESSR(w) =
∑

(i,j)∈P

lP (fi − fj)

+
∑

(i,j)∈O

lO(fi − fj) + λf>Lf, (15)



where f = f|X with f given as Eq. 12, and L is the graph
Laplacian constructed from X : L = D−W , where

Wij =


exp

(
−‖x(i)−x(j)‖

2

σ2

)
if x(i) ∈ N (x(j))

∧ x(j) ∈ N (x(i))
0 otherwise,

(16)

We use the k-nearest neighborhood forN , with scale parameter
σ2 and number of neighbors k as hyper-parameters.

This type of semi-supervised ranking extension has been
used in data retrieval applications and has demonstrated superior
performance over supervised ranking approaches [25, 15, 31].

Transductive ranking (TR). If our goal is to introduce an
ordering to a given fixed dataset X , as is typical in making
inferences on graph-structured data, then semi-supervised
ranking can be formulated as transductive learning, thereby
eliminating the model assumption on f (Eq. 12). In this case,
the learning algorithm directly estimates the ranking evaluations
f but not f itself. The corresponding energy functional ETR
is the same as ESSR (Eq. 15) but without the model assumption
of Eq. 12. Roughly, minimizing the regularizer f>Lf implies
that if x(i) and x(j) are similar in the input space Rm, the
corresponding rank estimates fi and fj should also be similar.
This framework has been proven to be effective in many
semi-supervised learning and spectral clustering applications.
Furthermore, it provides a very intuitive explanation for data
retrieval applications: “if x(i) and x(j) are similar, their
relevance to the query x should be similar as well”. This
non-parametric approach can be regarded as a direct adaptation
to the relative attributes setting of existing semi-supervised
and graph Laplacian-based ranking algorithms, which were
originally for data retrieval problems [43, 45].

In our supplemental material, we compare RS, SSR, and
TR from the manifold regularization perspective providing a
theoretical justification of TR and our approach (KR).

Kernel-based transductive ranking (KR). In data retrieval
applications of ranking, we care about the relevance of each data
point to a single query point, often to build a binary classifier.
However, in applications with pairwise relations, we care about
the relative comparisons of all possible pairs of data points in
X (equivalent to a linear ordering of X ). We exploit the rich
structure of all joint relationships to build a new regularizer. To
facilitate this process, we introduce an antisymmetric kernelK :
Rm ×Rm → R which contains relative ordering information:

K(x,y) = −K(y,x)

{
> 0 if Rank(x) > Rank(y),
< 0 if Rank(x) < Rank(y).

A simple example ofK is:

K(x,y) = f(x)− f(y) (17)

assuming that an underling linear ordering function f exists.
Given the kernel function K, our new kernel-based ranking
energy functional (KR) is obtained as:

EKR(K) =
∑

(i,j)∈P

lP (Kij) +
∑

(i,j)∈O

lO(Kij)

+ λtr[K>LK], (18)

where tr[A] is the trace of A, and Kij := K(x(i),x(j)). We
abuse notation and useK to denote a function and a matrix as
its sample evaluation. A similar regularizer was used to build
a match graph for 3D scene reconstruction [19].

If we adopt the kernel example of Eq. 17, the loss functions
(the first two terms in Eq. 18) are the same as in RS, SSR,
and TR. Therefore, the main difference of KR from the other
algorithms is that we use K instead of f as an object to
be learned. This perspective enables us to introduce a new
sample-based regularizer EH(K) := tr[K>LK]. The i-th
row K[i,:] of the kernel matrix K stores the results of relative
comparisons between x(i) and all the other data points in
X . Therefore, minimizing this regularization energy enforces
the smoothness of all pairwise relationships as weighted by
W (Eq. 16): “If x(i) and x(j) are similar, their relative rank
comparisons with respect to all other data points should be
similar as well”. Furthermore, if required, converting the
estimated kernel evaluations K to linear ordering f based on
Eq. 17 is straightforward (shown at the end of this section).

Now we provide an interpretation of this energy from the
tensor regularization perspective of Sec. 2: Our kernel-based
approximate Harmonic energy EH(K) is a consistent
discretization of the tensor Harmonic energy EH (Eq. 11):
Proposition 1. If M is a compact submanifold of Rm and
X = {x(1), . . . ,x(n)} be a sample from a uniform distribution
on M , then there is a constant CM > 0 such that for
K ∈ C∞(M ×M) and σ2x(n) = n−1/(d+2+α) with α > 0
as n→∞:

1

n3(σ2(u))d/2+1
EK(K)

p−→ CMEK(K). (19)

This result combines the convergence properties of two objects:
The convergence of graph Laplacian L to Laplacian ∆ and the
convergence of kernel evaluation matrixK to the corresponding
kernel functionK ∈ C∞(M ×M).

The proof is a straightforward applications of Theorem
4 by Zhou and Belkin [44]: Since K ∈ C∞(M × M),
Kp(·) ∈ C∞(M) for each p ∈ M . Applying the conver-
gence result of graph Laplacian to Kp(i)(·) for a fixed p(i)
(p(i) ∼ x(i)) [3], we have for each q(j) ∈ X ,

[LK]ji
n2(σ2(n))d/2+1

p−→ ∆Kp(i)(p(j)). (20)

Then Eq. 19 is obtained by applying Eq. 20 to each point p(j)
and the Stokes’ identity (Eq. 1).



Low-rank kernel-based ranking. Our preliminary exper-
iments have indicated that the kernel-based ranking (KR)
approach (Eq. 18) significantly improves ordering performance
over RS, SSR, TR. However, a major drawback of this
approach is its high computational and memory complexities:
It requires explicitly optimizing an n× n-sized kernel matrix
K. Therefore, directly applying KR to large-scale problems
is infeasible. We overcome this limitation by adopting a
low-rank factorized approximation of K: Given a factor
matrix B ∈ Rn×p (p � n), an antisymmetric kernel matrix
K̃ ∈ Rn×n of rank p is constructed as:

K̃ = BQB>, (21)

whereQ = R> −R withR being the lower triangular matrix
of ones. By regarding K̃ as an approximation ofK, we take the
low-rank matrixB as a new variable to optimize. Unfortunately,
reformulating the KR optimization problem (Eq. 18) based on
this factorization:

EKR(B) = LP (B) +LO(B) + λR(B)

=
∑

(i,j)∈P

lP ([BQB>]ij) +
∑

(i,j)∈O

lO(([BQB>]ij)

+ λtr[BQ>B>LBQB>], (22)

renders the energy functional EKR non-convex with respect to
the parameter matrix B. However, we empirically observed
that when B is initialized with all ones (i.e. B = [1]n[1]>p
with 1 = [1, . . . ,1]>), the resulting optimized solutions lead
to competitive ranking results. In our supplemental material,
we further support this factorization and the optimization
initialization approach by by evaluating their pure reconstruction
capability in image reconstruction as an example.

We minimize EKR(B) using gradient descent. The deriva-
tives of the regularization energy and the two loss terms are:

∂R(B)

∂B
= −2BQB>LBQ− 2LBQB>BQ, (23)

∂LP (B)

∂B>[t,:]
=
∑

(i,t)∈P

max
[
0,2(Tit −B[i,:]QB

>
[t,:])
]
QB>[i,:]

−
∑

(t,j)∈P

max
[
0,2(Ttj −B[t,:]QB

>
[j,:])
]
QB>[j,:]

∂LO(B)

∂B>[t,:]
=
∑

(i,t)∈O

2(Tit −B[i,:]QB
>
[t,:])QB

>
[i,:]

−
∑

(t,j)∈O

2(Ttj −B[t,:]QB
>
[j,:])QB

>
[j,:] (24)

whereB[i,:] is the i-th row of the matrixB, andQ = −Q>.

Reconstruction of f givenK. While the estimated kernel ma-
trixK may not satisfy the reconstruction constraint of f (Eq. 17)

Input: Data points X ; pairwise relationship
labels P andO; regularization parameter λ.

Output: Rank evaluations f∗.

InitializeB: B = [1]n[1]>p ;
Minimize EKR(B) using gradient descent (Eq. 22);
Construct f∗:
f∗ = HBQB>1−

(
h[h>BQB>1]

1+1>h

)
(Eqs. 21 and 25);

Algorithm 1: Kernel-based ranking.

for all pairs (x(i),x(j)) ∈ X ×X , f can be easily identified as
the least-square approximation (see supplemental for details):

f∗ = HK1−
(
h[h>K1]

1 + 1>h

)
, (25)

where H = 1/(n + ε)I, h = H1, and ε is a regularization
parameter fixed at 10−8. Note thatH and h can be calculated
before K is optimized. When the low-rank approximation
BQB> of K is adopted (Eq. 21), each occurrence of K in
Eq. 25 can be replaced by BQB> in Eq. 25. We summarize
our approach in Algorithm 1.

4. Experiments
We compare our kernel-based transductive ranking algorithm

(KR) to 1) the relative attributes RankSVM approach (RS,
Eq. 13 [28]); 2) its model-based semi-supervised extension
(SSR, Eq. 15) which can be regarded as an example of existing
work in data retrieval applications [15, 31]; 3) its straightforward
transductive extension (TR); and 4) deep neural networks that
are optimized based on stochastic gradient descent (DR) [38].

Datasets. We use eight datasets for evaluation. The first three
are Outdoor Scene Recognition (OSR, 2,688 images from 8
categories) and Public Figure Faces (PubFig, 8 people, 100
images each) as evaluated by Parikh and Grauman [28], and the
Shoes dataset (14,658 images in 10 categories) used to evaluate
the WhittleSearch extension of relative attributes [20]. We use
their categories as ground truths. For OSR, 512-dimensional
GIST descriptors are used as features. For PubFig and Shoes,
GIST features are combined with color histograms [28].

Each of these datasets has corresponding target attributes to
learn [28], e.g., OSR has 6 attributes: natural, open, perspective,
large-objects, diagonal-plane, and close-depth. Similarly, Pub-
Fig and Shoes have 11 and 10 attributes, respectively. Our goal
is to induce a linear ordering per attribute for each dataset. The
training labels (pairwise equality and inequality relationships)
are provided at the category level: A small subset of data points
is sampled from each class. From these training sets, the equal-
ity and inequality labels are generated as all possible pairwise
relationships. We use the training data points, including the or-
dering of data points based on attributes, as provided by Parikh
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Figure 2. Improvement from RS in mean rank correlation coefficients (y-axis) of different ranking algorithms for eight datasets. In all but PubFig,
our KR is comparable or better. First row: x-axis shows the number of labels per class. Second row (2–4): x-axis corresponds to the indices of
attributes to learn. The absolute rank correlation coefficients including the RS results can be found in the supplemental.

and Grauman and Kovashka et al. [20]. In general, relative
attributes can be used when the labels are provided per image or
object pairs. However, following Parikh and Grauman, we use
the category-level labels as they facilitate objective, quantitative
evaluation. For evaluation, we measure Kendall’s rank correla-
tion coefficient on all inequality pairs: It counts the difference
between the number of correctly ordered pairs and the number of
incorrectly ordered pairs normalized by the number of total pairs.

The ETH-80 dataset contains 3,280 object images from 8
different categories [23]. Each data point is represented based
on the HOG (histogram of oriented gradients) descriptors as
provided by Ebert et al. [10]. The MNIST training dataset
consists of 60,000 isolated digit images of size 28×28. We
use the gray-level values as features. The cropped Street View
House Numbers (SVHN) dataset contains 26,032 cropped
digit images. This dataset has a similar format as MNIST;
however, it exhibits large intra-class variations and includes
complex photometric distortions that make the learning problem
challenging [26]. Each data point is originally presented as a
32×32-sized color image. We reduced the dimensionality of
the dataset to 100 using principal component analysis. The
CIFAR-10 dataset is a labeled subset of 80-million tiny images
datasets [33]. It consists of 60,000 32×32-sized color images
in 10 classes [21]. Each image in this dataset is represented
based on RGB color values leading to a 3,072-dimensional
vector. We applied principal component analysis to reduce

the dimensionality to 700 which contains around 99% of total
variance. The Describable Textures Dataset (DTD) [7] contains
5,640 texture images arranged based on 47 manually-assigned
semantic attributes (e.g., chequered and bumpy; 120 images per
attribute). We use the semantic attribute indices as class labels.

Method. To evaluate these eight datasets, we assigned linear
ground-truth ranking based on their class labels, e.g., for
MNIST, digit 1 has a higher rank than 2. The evaluation criteria
is the same as the first three datasets (Kendall’s correlation
coefficients). However, the training labels are collected in a dif-
ferent way: Instead of pre-selecting a set of training data points
and extracting all possible pairwise labels therein, we randomly
selected a prescribed number of pairwise labels from the entire
database. For a dataset consisting of c categories, l different
labels are selected per class leading to c(c− 1)/2× l inequality
and c× l equality labels. We report the performances of ranking
algorithms with respect to varying number l of labels per class.

Our kernel-based algorithm produces a pairwise rank
matrix (K or B) as an output. While Kendall’s correlation
coefficients can be directly calculated from these outputs, for
fair comparison with other algorithms, we explicitly reconstruct
a linear ordering f using Eq. 25. This slightly reduced the
performance in terms of correlation coefficients. For all datasets,
we repeated the experiments 10 times.



Results. Figure 2 shows the improvement of mean rank
coefficients from RankSVM (RS) with corresponding error
bars (with length twice the standard deviation). Deep learning
algorithm (DR) outperformed RS for all datasets demonstrating
the effectiveness of deep learning for ranking problems. Also,
except for PubFig, the two transductive learning algorithms
TR and KR constantly outperformed RankSVM (RS). This
demonstrates the effectiveness of exploiting unlabeled data in
relative attribute applications. However, unlike TR and KR,
performance of the model-based semi-supervised extension
(SSR) is roughly on par with RS (it is better than RS on ETH-80
and DTD, and worse on OSR and PubFig). Our kernel-based
ranking algorithm (KR) significantly improves upon the other
algorithms including the baseline transductive ranking (TR).

In particular, for MNIST, KR resulted in≈ 40% higher rank
coefficients than other algorithms when the number of labels
per class were less than 10. On OSR, DR and KR perform
best. The improvement of KR over TR is especially significant
when the number of labels l is limited. As l increases, the
performance gap between these two algorithms narrows and
eventually, they become almost identical as shown in the
corresponding results of DTD.

Although the performances of KR and TR on this dataset
are roughly equal, their performance variations across different
attributes are significantly large. This suggests that, from the
performance perspective, DR and KR are complementary. In
our supplemental material, we demonstrate that by combining
DR and KR we can construct a ranker that frequently
outperforms other algorithms.

A notable exception to this tendency is PubFig, where DR is
clear winner. This indicates that semi-supervised learning might
not be always useful. One possible explanation is that PubFig
has insufficient data points to reveal the underlying manifold
structure upon which the semi-supervised algorithms build
(only 772 data points, while other datasets are of order thousand
or ten thousand). Another explanation is simply that the data do
not lie on a low-dimensional manifold. Unfortunately, verifying
these possibilities is a challenging problem. Furthermore, it is
not straightforward to predict which (class of) algorithms would
lead to better performances on specific datasets or problems. In
practice, users would interact (provide labels) with data and be
able to provide feedback on the utility of different algorithms. In
this respect, the experiments demonstrate that our kernel-based
ranking algorithm provides a good alternative to RankSVM and
deep learning.

Hyper-parameters and time complexity. The RS, SSR, TR,
and KR compared in the experiments have a regularization
hyper-parameter λ. In addition, all semi-supervised learning
algorithms (SSR, TR, KR) require determining the k number of
nearest neighbors and the scaling parameterσ2 to build the graph
Laplacian (Eq. 16). We determined σ2 adaptively for each data
point x(i) such that σ2i becomes half of the mean distance from

x(i) to its k-NNs [4]. The remaining hyper-parameters λ and k
were optimized based on a separate validation label sets which
have the same size as the corresponding training set for each
experiment. For DN, the number of hidden layers was fixed at 6,
while the size of each layer (number of units) and the number of
epochs were automatically tuned as hyper-parameters. For each
run of DN, the network was trained with 5 random initializations,
and the one with the smallest validation error was chosen.

The time complexity of our low-rank kernel-based ranking
algorithm depends on the number n of data points, the rank
p of K factorization (Eq. 21), and the k nearest neighbors
used to build the graph Laplacian (Eq. 16). In each gradient
calculation step (Eqs. 23-24), BQ can be pre-calculated and
QB> = −Q>B>. Therefore, the most demanding computa-
tion is to calculate LB andB>[BQ]. The time complexity of
B>[BQ] is O(np2) while LB takes O(knp). In our Matlab
implementation, evaluating the gradient ofB on 60,000 MNIST
points with p = 50, k = 8, took≈ 0.004 seconds on a 3.6GHz
machine. The time complexities of RS and TR areO(m) and
O(n), respectively withm being the input space dimensionality.
While lower performing, RS is faster when m is smaller than
the number of data points n. Further, KR is less suitable for
interactive applications when n is very large. That said, KR
is the first algorithm that fully considers all relationships in the
ordering task when designing a regularization energy.

5. Discussion and conclusion

We have empirically verified our conjecture on the
effectiveness of modeling and regularizing full pairwise
rank relationships with second-order tensors (kernels). Our
algorithm was obtained as a discrete approximation of
tensor regularization framework on manifolds. To cope with
large-scale problems, we have proposed sparse factorizations.
In supplemental material, we describe how our framework can
be applied to learning other tensors, e.g., future work could
address how to apply it to learning metric tensors.

Our low-rank factorization approach (Eq. 21) was inspired by
approximating the dense kernel matrix from the computational
complexity perspective. Therefore, the rank p of the matrix
B was prescribed by the expected computational and memory
complexities (fixed at 50 throughout the entire experiments) and
therefore, we haven’t actively explored the performance effect
of varying rank. However, it is well known that low-rank approx-
imation by itself has a regularization effect and it has been ac-
tively exploited in estimating matrices, e.g., in compressed sens-
ing [8], photometric stereo and structure from motion [42], and
metric learning [39]. Accordingly, future work should analyze
the low-rank approximation from the regularization perspective.
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