
Towards Camera Choreography:
Physically-constrained Multi-camera Clustering

Eleanor Tursman James Tompkin
Brown University

Figure 1. Our task. Top: Edited video shots of two people; the event was captured live. Middle: A top down view of the
physical set. Bottom: A top down view of the camera capture setup. As one camera is shooting, the other moves into position
such that only two cameras are needed to capture the event. The goal of our work is to cluster camera identities and assign
motions to an edited video such that the real world hidden motion of the cameras is physically feasible.

Abstract

We present a method to cluster shots by camera iden-
tity in a synthetic 2D space which simulates edited video
input. We show that our methodology isolates the space
of physically feasible camera movements given a desired
edited output, with the goal of minimizing overall camera
motion. The problem space appears at first glance to be
under-constrained, as the video is discontinuous due to ed-
its, and is shot using an unknown number of uncalibrated
cameras. We create a model to generate viable random
synthetic 2D datasets of multi-camera shooting setups, and
show that by using physical shooting constraints and vari-
ous path planning methods, we are able to calculate a space
of feasible camera clusterings and their associated move-

ments between shots. We compare greedy and dynamic clus-
tering methods which use linear and piece-wise linear tra-
jectories. We find that the dynamic linear method yields the
largest number of clusterings with costs less than or equal
to that of the ground truth, and is one of the best methods for
capturing clusterings with minimal motion. The dynamic
linear method is able to sufficiently capture the underlying
motion of the cameras to create good clusters. This work
contributes towards making it possible both to synthesize
plausible camera motions given a set of shots with target
camera positions, and to infer plausible camera identities
and hidden motions from an edited video input.

1



1. Introduction

Expansive video data are accessible to the general pub-
lic, with many of these recording live events. Theater, sit-
coms with studio audiences, late night talk-shows, ballet
and opera, and other productions recorded live typically use
multi-camera setups, where all cameras are shooting con-
currently, and where their feeds are edited together in post
or in real time. To effectively analyze and manipulate these
datasets, we typically isolate important moments in each
video by first splitting it into a series of shots and scenes
whose image content can then be parsed. Using the image
content within a shot, we can recover camera pose, or ex-
trinsics, through structure from motion [4]. However, this
set of camera poses gives us no information about cam-
era identity, nor the motion of the cameras outside of the
edit sequence. Camera choreography, or planning camera
movement to recreate a desired edited look, is not possible
without this information.

Intuitively, as we watch multi-camera video with con-
tinuous time across edits, the cuts between shots give us
a physical sense of the camera positioning—the changing
camera extrinsics between and within shots provides an im-
pression of the camera setup and camera movement around
the set. We aim to algorithmically exploit this intuition to
recreate feasible camera setups for edited video input.

Given some edited video of a live or live-captured event,
we aim to infer the way that the video was shot (Figure 1).
To accomplish this goal, we need to determine how many
cameras were used to shoot the edited video, and which
camera was responsible for which shot. The initial problem
space is under-constrained, since our edited video input has
been shot by an unknown number of uncalibrated cameras,
and undergo unknown motion while they are not actively
shooting in the edit sequence. Because of these issues, we
are unable to reliably isolate the ground truth sequence of
camera assignments to each shot. Instead, we carve out the
space of possible camera assignments, where a possible se-
quence of assignments has to have a physically feasible set
of camera motion paths during shooting.

Problem Statement Suppose we have some sequence of
n shots s1, . . . , sn with shot lengths t1, . . . , tn, known cam-
era intrinsic and extrinsic poses p1, . . . , pn for the currently-
viewing camera, but an unknown number of cameras k and
unknown hidden camera motions for not-currently-viewing
cameras hk1, . . . , hkn. We wish to assign a camera identity
to each shot and generate a plausible hidden camera motion.

In essence, when we make a sequence of assignments,
we are clustering shots by camera identity (Figure 2). We
use path planning as our clustering evaluation metric, since
a given clustering is only possible if the cameras can be
pushed into position in time to shoot. For each shot sj , we

determine the validity and path length of assigning it some
camera c, given the camera’s previously known location in
time and space si. As we create a path, we are constrained
by the field of view of the active camera and by the shot
lengths. Over the course of our camera assignments, we aim
to minimize the overall necessary movement to hit our tar-
get camera poses at each of the n shots, and then rank pos-
sible clusterings using overall distance travelled as a cost.

Our method relies on edited video input which is pre-
processed in two ways. First, the we assume video is sep-
arated into a sequence of shots. Second, we assume that
estimated camera intrinsics and extrinsics exist per shot
(e.g., using feature point correspondence). Given this pre-
processed video, we aim to assign a camera identity to each
shot, which we formulate as a clustering problem.

We circumvent these pre-processing requirements by
creating synthetic datasets that start with this information.
We randomly generate 2D synthetic datasets which have
camera assignments, intrinsics, extrinsics, and lengths per
shot. The intrinsics, extrinsics, and shot lengths are then
passed through our clustering process. Clustering shots by
camera identity is constrained by the physical feasibility of
creating paths between target camera positions. These pos-
sible clusterings are then ranked based on minimizing over-
all camera motion.

Applications Once we have assigned camera identities
per shot and have calculated physically-feasible camera mo-
tion paths, we have two major application possibilities: syn-
thesis or forward applications, and analysis or backwards
applications. By synthesizing our results, we can design
camera choreography that achieves a desired edit look, e.g.,
by meeting a set of user-specified constraints within a shot
sequence design. By analyzing an existing edited video, we
can potentially learn how to shoot in a particular style.

Contributions These constitute synthetic 2D multi-
camera dataset generation, and a method for isolating the
space of physically feasible camera clusterings while mini-
mizing overall camera motion.

2. Related Work

We cluster our shots based on camera identity, using how
these cameras could possibly move around our set as our
clustering metric. To establish a choice for this clustering
metric, we look to path planning methods from robotics.
Since there is no direct analogue for clustering given this
particular problem setup, we pull from related work which
tackles similar clustering setups.

2



Figure 2. We generate 2D synthetic data with known camera assignments per shot. We make the assumption that we would be able to
procure this information through structure from motion and self-calibration in a real world scenario. Then, we pass this information to our
clustering algorithm. We use physically feasible path planning as our clustering metric. We rank each clustering of camera identities to
shots by minimizing the overall distance travelled by our cameras while path planning.

2.1. Path Planning

In robotics, path planning methods vary depending on
how the space is both represented and traversed. In this
work, we use both sampling and model based methods,
which either discretely sample the space, looking for ob-
stacles, or determine how to reach a goal by modeling ob-
ject kinematics [10]. LaValle’s Rapidly-Exploring Random
Tree (RRT) is a popular sampling method which uses a ran-
domized graph [6]. Different branches grow off of the tree
and explore the regions that are reachable from the root po-
sition. While the shape of the tree is dependent on the sam-
pling method we use for our space, RRT can converge more
quickly than an exhaustive search of a given physical space.
We use RRT with cumulative distance travelled from the
root as edge weights as one of our path planning metrics.
Masehian and Habibi proposed tessellating space using De-
launay triangulation and take an average of selected trian-
gles to find a path from a target to a goal in 2D space [7].
However, we are able to sufficiently explore our space using
either piece-wise linear exhaustive searches or RRTs, which
do not involve pre-processing the search space.

2.2. Clustering

Clustering methods are principally subdivided by data
representation and distance or similarity metrics [9]. The
major class of methods most related to this work are those
created for spatial-temporal data, like Birant and Kut’s ST-
DBSCAN algorithm [2]. ST-DBSCAN is a version of the
density based clustering algorithm DBSCAN [3], which is
modified to handle spatial-temporal data, like regional tem-
perature data taken at different times of day. In our problem
space, we cannot run a clustering method like ST-DBSCAN
directly on tuples of the position and time associated with
each shot, because our goal is not to group shots that are
similar in length or physically close to one another, but to
associate shots with camera identities, given position and
time information. These genres of clustering algorithm will
assign some number of cameras to points that are close to
one another physically, ignoring the specific constraints of

our problem space– for example, a camera cannot shoot
twice in a row since we see an edit. We do pull from the
core concept in these algorithms that points in a cluster have
to be “densely reachable,” but we parameterize this concept
literally by using path planning to determine if we can hit a
target position in a given amount of time.

Instead of clustering spatial points, Yuan et al. exam-
ine major methods for clustering movement behavior [11].
Much like traditional clustering, trajectory clustering relies
on trajectory similarity metrics. The methods and metrics
that they study are about clustering paths that look similar,
whereas in our problem space the shape of a given cam-
era path is not important. Rather, we care about its start,
intermediary targets, and the physical feasibility of a path
through that set of points.

Kheirkhah and Khansari create clusters of wireless cam-
eras based on detecting overlapping fields of view in order
minimize energy consumption by reducing overlap without
sacrificing coverage [5]. They create their clusters greedily,
adding new nodes depending on how they correlate with
existing clusters. Ala-Eddine et al. approach the problem of
clustering wireless cameras by instead creating maximum
cliques, where each camera is a node, and each clique has a
high degree of field of view overlap [1]. It is not sufficient
for us to use overlapping field of view as our main clustering
metric, since unlike the stationary setup presented in these
two papers, our cameras can move between recorded shots.
Initially, we follow the rough methodology of these works
with our greedy clustering setup, where clusters correspond
to camera identity, though we use a different metric that
corresponds to the feasibility of a given camera movement.
However, we find that this is not sufficient for our problem
space, where many possible clusterings will be able to re-
produce a given edited sequence, which is why we expand
our search space using a dynamic method.

Zaı̈ne and Lee’s work on clustering given physical con-
straints is closely related to our problem space, since in ad-
dition to density based clustering of spatial data, they model
physical constraints which need to be avoided [12]. While

3



we have temporal data and changing physical constraints as
the shooting camera changes, we follow their core method
of representing physical constraints as polygons in space
that cannot be intersected by our data.

Moving outside the realm of computer vision, Shahab
Pasha’s thesis work on clustering audio signals of an uncal-
ibrated, moving array of microphones is similar to our own
problem, in that both scenarios have uncalibrated sensors
with unknown positions moving through some fixed space
[8]. Given known room geometry, they localize the sources
of acoustic signals by using time delays in impulses and
by looking at the amount of noise in the resulting signals.
However, unlike us, they start with a known number of sen-
sors, and have access to all of the data recorded from these
sensors at all points in time. If given an edited input of audio
signals, they would not be able to cluster their audio signals
with their current methodology.

2.3. Limitations of Existing Clustering Approaches

To cluster our shots by camera identity, our problem
space requires a more specialized metric of comparison than
the methods presented thus far. We cannot use a density
based algorithm and cluster shots that have physically or
temporally close positions, since depending on when those
positions arise in our sequence, moving a camera between
those close positions may cross the field of view of an ac-
tively shooting camera. Our data points are codependent—
deciding how to cluster one point will affect how future
points are clustered. Therefore, while we adopt certain el-
ements of existing clustering work, we approach this prob-
lem from a different angle via path planning.

3. Method
We aim to cluster shots using the physical constraints

of a real-world setup, since without taking advantage of
the way that multi-camera video is shot, we do not have
enough information from the structure from motion and
self-calibration shot by shot results to constrain the prob-
lem space. In other words, since all cameras in this kind of
setup are shooting at all times, then have their feeds edited
together for final assembly, cameras need to be pushed into
position while the scene is being shot. While one camera
is shooting a close up, another camera is being moved into
position for the next shot. We can take advantage of this in-
formation to determine how likely it is for a new shot with
some extrinsics to be an existing camera in the scene. Since
to our knowledge, there are not any datasets with ground
truth for tackling this type of problem, we must construct
our own data with ground truth for validation purposes.

3.1. Synthetic 2D Dataset Creation

Let C be a function parameterized by integers n and k,
such that C(n, k) produces a series of n shots s1, ..., sn,

using k cameras c1, ..., ck. We define each shot si =
(cj,i, pi, fj,i, ti, ai), where j ∈ [1, k], pi is the camera posi-
tion, fj,i is the focal length associated with the camera cj ,
ti is the number of frames in shot i, and ai defines the set of
feasible movement area for cameras c1,...,ck at shot si.

The function C creates a series of shots following the
subsequent constraints:

1. no one camera can appear for two assignments in a
row, so ∀i ∈ [2, k], given cj,i−1 and cl,i, and j, l ∈
[1, k], j 6= l,

2. pi cannot be in the field of view of the actively shooting
camera cj,i−1,

3. and the most recent positions of all cameras in
s1, ...si−1 cannot be in the field of view of cj,i−1.

The first constraint is necessary because an edit between
two shots would not happen if we were not moving to a
new camera. The second constraint keeps the current cam-
era from moving into the actively shooting camera’s field of
view. The field of view is geometrically calculated using the
sensor width of the camera and its focal length. The third
constraint ensures that when the current camera is active in
si+1, no other cameras will be blocking its field of view.

When a camera first appears in the sequence, we initial-
ize its position in an arc facing the positive y direction. This
enforces that the cameras are initially spread some distance
apart, and are all facing the “set.” Intuitively, if a camera
has appeared before, we need to determine if it would have
been able to reach this new position given our real world
physical constraints and time. Each existing camera has an
associated area of feasible movement for every given shot
i, ai. Assuming for simplicity that cameras can move with
a maximum velocity of one meter per second, our distance
travelled is equivalent to the time we have to move a cam-
era. For every shot where a camera is on set, but is not
actively shooting, we increase its area at shot i, creating ai,
by drawing circles of radius ti−1 around each vertex on the
current boundary of ai−1. We sample points along each cir-
cle by intervals of π

16 . If this area intersects with the field
of view of the actively shooting camera, as per item two
listed above, we take the intersection of this circle and the
constraint. We calculate a new position for our camera by
picking a random point from within its associated feasible
area of movement. After calculating the new position of the
camera, we randomly rotate it such that it is still facing the
set, and we reset its feasible area of movement. Figure 3
provides an example of one randomly generated datasets.

3.2. Camera Clustering

Given a dataset generated via C, our goal is to take all
the information in each si except the ground truth camera
assignment, and arrive at a physically plausible attribution

4



Figure 3. We generate a dataset C(10, 4). From left to right, top to bottom, we have shots one through ten. In each image, a camera is
represented by a 1D image plane, and each camera’s field of view is denoted by a triangular space. A field of view is filled when that
camera is actively shooting. Cameras are colored based on identity. The remaining set of images represent the physically feasible area of
movement, ai, for each shot i. Note how when a camera is actively shooting, its area is reset. Otherwise, as a camera remains still, its
area of feasible movement grows. Relative area growth is determined by shot length. The blue square represents the space the cameras can
move around in. Note that in the last shot, the feasible area of camera one has become warped due to its intersection in the previous shot
with the field of view of camera two.

5



Clustering Type Path Planning

Greedy Line
Piece-wise Line
RRT

Dynamic Line
Piece-wise Line
RRT

Table 1. We evaluate three different path planning metrics for both
greedy and dynamic clustering methods.

of cameras to shots. We pose this as a clustering prob-
lem, where we cluster shots by camera identity. We present
and compare two clustering algorithms, one greedy, and the
other dynamic, and evaluate the use of three separate path
planning methods for each one (see Table 1).

3.2.1 Greedy Clustering

The greedy clustering method chooses the camera assign-
ment per shot that immediately minimizes the amount of
overall camera movement while hitting the target positions.
We start by assuming the first two shots are from distinct
cameras, since there is an edit between them. Let our cur-
rent set of cameras in the scene be ĉ. For all subsequent
shots si, i ∈ [3, n], we minimize the following energy,

Ei = argminx∈ĉ,x 6=ĉi−1φ(px, pi, ĉi−1) (1)

where φ is our path planning cost function, px is the po-
sition of some camera x in the set of known scene cameras
ĉ, pi is the position of the unattributed camera of the current
shot, and ĉi−1 is the field of view constraint defined by the
position and focal length of the previously shooting camera.
Intuitively, we take the last positions of all cameras we have
placed in the scene so far and see how long it takes for each
of them to reach the newest position, while avoiding the
field of view of the actively shooting camera. The currently
shooting camera cannot be assigned to this new shot.
Ei gives us a camera assignment and the length of the

path this camera takes from px to pi. Assuming a maximum
velocity of one meter per second, distance and time are pro-
portional. Then, we compare this path length d to ti−1, the
length of the previous shot. If d ≤ ti−1, it is physically fea-
sible for that camera to travel to the new position given our
stated physical constraints, and we assign this camera to si.
If d > ti−1, si must be made by a new camera, and we add
a new camera with starting position pi to ĉ.

Our feasible movement areas allow us to assume that
cameras can move at any time unless they are actively
shooting. Our greedy method first calculates the number
of shots in which a given camera could be moving, or
M = i−x− 1, where i is the index of the current shot, and

x is the index of the last shot the given camera was active.
We now use either straight line distance, piece-wise line dis-
tance, or RRT as our φ. Note that for all of these methods,
the constraint region formed by the currently shooting cam-
era’s field of view changes with every shot.

When φ is straight line distance, we accumulate distance
M times, travelling along the line connecting px to pi. At
each step, we stop either when we hit the wall of a field of
view constraint, when we’ve run out of travel time, or when
we reach px. We throw away the path if at any given step,
the current line segment is completely inside a constraint,
since physically this would entail our moving camera being
seen by another actively shooting camera.

When φ is piece-wise line distance, we again accumulate
distanceM times. We create a graph of possible movement,
where each node is a position, and each edge is weighted
with the L2 distance between its endpoints. From our start-
ing position, px, we draw a polygon of feasible travel area,
just like we do in dataset generation, with intervals of π

16
between polygon vertices. We connect the node px to all
vertices that it can reach. For each new shot, we expand our
polygon representing our feasible travel area. Unless pi is
within reach during the current shot, we exhaustively draw
edges from every existing node to any new polygon vertex
that can be physically reached. Otherwise, we connect all
nodes within reach to pi. We connect all possible nodes,
not only the outermost nodes, as we want to simulate paths
where the camera is still for a shot, or travel away from the
goal position to get around a constraint. To obtain our best
path from px to pi, we take the shortest path along the graph.

When φ uses RRT, and we have M shots in which to
move, we create a tree to sample our feasible movement
area. However, unlike in the piece-wise line case, RRT is
less exhaustive. We uniformly randomly sample the “set”
space 90% of the time, and sample pi, our goal, 10% of the
time. We find the closest node in the tree to this sampled
point, and travel some ∆d distance towards it, creating a
new node. We weight the edges of this tree based on L2
distance between endpoint nodes, except this time we ac-
crue distance travelled along a branch. We stop our tree
from growing into the constraint area of each shot, and cap
the total length of a given branch based on total accrued
travel time of our M shots. If the goal is in reach of a node,
instead of moving ∆d towards it, we connect directly to it.
We grow the same tree for all M shots. Note that while our
modification of RRT is not guaranteed to find the shortest
path from px to pi, it is able to get around constraints, and
is faster than the exhaustive piece-wise metric. In our im-
plementation, we add 100 nodes to the tree per shot, and use
∆d = 0.01. See Figure 4 for an example of the differences
between an RRT tree and a piece-wise line graph.

Clustering the cameras greedily will keep us from under-
fitting, since we start with two cameras and only increase

6



Figure 4. On the left hand side, we have an example of piece-wise line output. On the right hand side, we have an example of RRT output.
For visual clarity, the circular sampling in these cases is reduced to π

8
, and the ∆d of RRT is increased to 0.5. In both images, a feasible

area in red grows three times, and each blue triangle represents a constraint for one of those three shots. The starting point is the center of
each bullseye, and the target is the bright green point.

the number of camera clusters when we have a point an ex-
isting camera could not physically travel to within the shot
time. However, the best camera assignment shot to shot
does not guarantee the best overall assignment. For this rea-
son, we also explore clustering the cameras dynamically.

3.2.2 Dynamic Clustering

Our dynamic clustering algorithm computes the cost of ev-
ery possible valid sequence of k cameras over n shots. We
incrementally build a set of sub-sequences each starting
from the first shot. A valid sub-sequence has an associ-
ated cost, while an invalid sub-sequence has a cost of −∞.
Adding a new camera assignment to a valid sub-sequence
will produce a new valid sub-sequence with an incremen-
tally calculated cost, or an invalid sub-sequence. We do
not add new camera assignments to invalid sub-sequences,
which can cut off large branches of sequence calculation.

Through this process, we are able to look through all
possible sequences of our cameras without having to con-
stantly recompute travel costs. Additionally, since the po-
sitions and constraints at each shot are fixed, we are able
to memoize our cost function by these constraints, greatly
reducing computation time. However, unlike in the greedy
case, we need to give our dynamic clustering algorithm a
maximum number of cameras k.

Given some k, we recursively explore all valid sequences
that are n shots long. Each time we add a camera to a se-
quence, we accrue cost, where we travel towards a goal pi

for M shots using either straight line, piece-wise line, or
RRT path planning. All of these metrics work in the same
way as they do in the greedy algorithm described above,
except we reformat them slightly to memoize them.

3.2.3 Edge Cases and Assumptions

Since positions are fixed at every shot, given a particular
camera clustering, it is possible that the most recent position
of an existing camera on the set will be in the field of view
corresponding to the current shot. While it is physically
possible to have that existing camera move out of the way,
there is no simple principled way to determine how to move
it within our framework, so we throw away sequences that
violate this condition. In the greedy algorithm case, this
means we have no output; in the dynamic algorithm case,
this means that the number of total outputs will be reduced.

In a rare edge case, if the current shot is very short, it is
possible for the entire camera sensor width to not be able
to fit in the feasible area. For this reason, we only count
the center point of the camera sensor as the physical “cam-
era position.” In other words, only that center point is not
allowed to be in other cameras’ fields of view.

Finally, we make the assumption that overall distance
travelled by our cameras is a good metric to minimize to de-
termine the set of feasible clusterings. We do this because
while we could theoretically have many circuitous camera
paths, in practice we hope to do the least amount of work,
or moving around, as possible.

7



Table 2. We calculate the empirical runtime of each path planning metric by running our dynamic method ten times on ten datasets, timing
our result, and taking an average. We formulate the average big O runtimes for the path planning methods, where k is our number of
cameras, n is the number of shots, r is the sampling rate of the polygon expansion, and p is the number of nodes we add at each call to
RRT. While our empirical runtime for RRT is slowest, it has a better overall runtime complexity than that of piece-wise lines.

Path Planning Empirical Runtime (s) Complexity

Line 0.59 O(n · k)
Piece-wise Line 139.79 O(n · rk)
RRT 149.64 O(n · p · k)

Figure 5. Each integer on the x-axis represents a different unique sequence of camera assignments for all shots. We align our data such
that, for each value on the x-axis, we are comparing the distance cost of a specific sequence for all methods. Not all methods pick up the
same total set of possible sequences, so there are some implicit zeroes in each line plot. Each image represents results from a different
dataset. While the greedy RRT method tends to be the most expensive, all greedy methods choose the same output sequence. The distance
cost of the dynamic methods varies depending on the dataset. The RRT metric is always the most expensive.

4. Results
We evaluate output based on counting the number of se-

quences with costs at least as good as that of the ground
truth sequence, since we care about finding the largest num-
ber of feasible low cost sequences. We also look at the
normalized difference in cost between the best sequence
of each method and the cost of the ground truth sequence.
More precisely, we calculate

costnorm =

{
costGT−costSEQ

costGT
, a sequence exists

−1, no sequence exists

where costGT is the ground truth cost using straight line
distance, and costSEQ is the best cost from a given algo-
rithm. The closer costnorm is to one, the better our se-
quence. When costnorm is close to zero, costSEQ is close
to the ground truth cost. In certain edge case scenarios, an
algorithm may not produce a valid sequence. In this case,
we penalize this lack of output with a negative one. We use
these metrics instead of an edit distance or a direct compari-
son to the ground truth sequence, because we are attempting
to encapsulate the space of feasible sequence solutions in-

stead of only arriving at the ground truth sequence.
We create 50 datasets, each using C(10, 4). Shot length

is randomly selected between 30 and 120 frames, or one
to four seconds. We include the simpler versions of some
of our methods, which assume that cameras can only move
right before their shot assignment, to confirm that our per-
formance improves with the more complex methods. We
discuss these methods in more depth in the appendix. We
evaluate the average runtimes of our planning methods in
Table 2. In Figure 5, we see that, across various datasets, the
overall cost of RRT distance is highest. All dynamic meth-
ods have roughly the same shaped curve, indicating that
they are all finding similar paths between target positions.
All of the dynamic methods also converge as they approach
their lowest cost sequences. This convergence makes intu-
itive sense, as those sequences require less motion, so the
differences in the path planning metrics will be less appar-
ent. The greedy methods all tend to either converge to the
lowest cost sequence, or not converge at all. When they find
a valid output, the cost of the RRT solution is slightly higher
than that of the other two, which are practically overlapping.

Table 3 shows that overall our straight line and piece-

8



Table 3. We calculate the mean and standard deviation of cnorm and the number of sequences that cost at most that of the ground truth
sequence over 50 datasets. We penalize greedy results with k > 4 with a −1. In the greedy case, our piece-wise line method performs
best. In the dynamic case, the simpler methods perform worse, as we expect. As exhibited in one of our example datasets, the straight line
and piece-wise line methods perform almost identically for both tests. While RRT is better than the simple cases, its performance is worse
than the other two planning methods.

Clustering Type Path Planning Average Offset from GT Cost (m) Number of Good Sequences Unsolvable Datasets

Greedy Simple Line 0.8209± 0.4066 17
Simple Trajectory 0.6837± 0.5223 16
Line 0.1159± 0.4383 N/A 9
Piecewise Line 0.0978± 0.4122 9
RRT 0.1507± 0.4399 9

Dynamic Simple Line −0.1835± 0.2125 4.1429± 4.2594 43
Simple Trajectory −0.2214± 0.1471 3.6364± 3.6952 39
Line −0.2186± 0.1480 23.0513± 27.7574 11
Piecewise Line −0.2124± 0.1497 21.9500± 27.1094 10
RRT −0.1652± 0.1661 13.5000± 17.7334 12

wise line methods have the best performance, with average
offsets being slightly higher than the ground truth sequence
cost. This trend toward negative values may be influenced
by our edge case outlined in Section 3.2.3. In this case, we
throw away sequences where clustering assignments may
cause existing cameras to appear in an active field of view.
This issue occurs because all of the cameras on the “set” are
not moving in the same way or at the same times as they are
in the ground truth.

It is possible that performance may be roughly the same
for both piece-wise lines and straight lines because our
graph creation is not exhaustive enough at sampling inter-
vals of π

16 , but we believe that it is more likely that the un-
derlying movement for four cameras in this size of “set” is
well parameterized by the straight line metric. It is also pos-
sible that our generated datasets were not complex enough
to frequently require more winding paths given our num-
ber of cameras, scene size, and sensor width. Performance
for the dynamic results is also influenced by the number of
cameras, k. Since our datasets are randomly generated, it is
possible that some results only have three cameras instead
of four, which will reduce performance results.

5. Conclusion

We have presented methods for randomly generating re-
alistic 2D synthetic data of live edited video, and com-
pared various clustering processes and path planning met-
rics. Upon evaluation, we found that straight line distance
with dynamic clustering produces the largest number of fea-
sible results with shorter overall accumulated camera travel
distance than the ground truth assignment. These surpris-
ing results indicate that the underlying motion of the data
can be sufficiently parameterized by simpler path planning
than RRT, piece-wise lines, or simple trajectory optimiza-

tion. Moving forward, we will apply our dynamic straight
line distance clustering to a synthetic 3D dataset, where we
will then be able to re-shoot the action of our head models
using our resulting output sequence of camera assignments.

References
[1] B. Ala-Eddine, F. Brahim, and M. Kurulay. Efficient camera

clustering method based on overlapping fovs for wmsns. In-
ternational Journal of Informatics and Applied Mathematics,
1(1):11–27.

[2] D. Birant and A. Kut. St-dbscan: An algorithm for cluster-
ing spatial–temporal data. Data & Knowledge Engineering,
60(1):208–221, 2007.

[3] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In Kdd, volume 96, pages 226–231,
1996.

[4] R. Hartley and A. Zisserman. Multiple view geometry in
computer vision. Cambridge university press, 2003.

[5] M. M. Kheirkhah and M. Khansari. Clustering wireless
camera sensor networks based on overlapped region detec-
tion. In 7’th International Symposium on Telecommunica-
tions (IST’2014), pages 712–719. IEEE, 2014.

[6] S. M. LaValle. Rapidly-exploring random trees: A new tool
for path planning. 1998.

[7] E. Masehian and G. Habibi. Motion planning and con-
trol of mobile robot using linear matrix inequalities (lmis).
In 2007 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 4277–4282. IEEE, 2007.

[8] S. Pasha. Analysis and enhancement of spatial sound scenes
recorded using ad-hoc microphone arrays. 2017.

[9] D. Xu and Y. Tian. A comprehensive survey of clustering
algorithms. Annals of Data Science, 2(2):165–193, 2015.

[10] L. Yang, J. Qi, D. Song, J. Xiao, J. Han, and Y. Xia. Survey
of robot 3d path planning algorithms. Journal of Control
Science and Engineering, 2016:5, 2016.

9



[11] G. Yuan, P. Sun, J. Zhao, D. Li, and C. Wang. A review
of moving object trajectory clustering algorithms. Artificial
Intelligence Review, 47(1):123–144, 2017.

[12] O. R. Zaı̈ane and C.-H. Lee. Clustering spatial data when
facing physical constraints. In 2002 IEEE International Con-
ference on Data Mining, 2002. Proceedings., pages 737–740.
IEEE, 2002.

A. Simple Line and Trajectory Methods
For the simple methods we assume that a camera cannot

move until right before its turn in the sequence. We use
either straight line distance or trajectory optimization as our
φ. In the straight line case, a path is infeasible if a straight
line from px to pi intersects the constraint. Similarly, in the
trajectory optimization case, a path is infeasible if one can’t
be made that doesn’t intersect a constraint, but this path can
curve.

More specifically, when using trajectory optimization,
our constraints on the path φ creates are as follows:

1. the points cannot appear in the field of view of the
current camera, yi − (ml(xi − fx)) − fy ≤ 0 ∨
yi − (mr(xi − fx))− fy ≤ 0,

2. the path is smooth,
√
v2xi + v2yi ≤ vmax and√

a2xi + a2yi ≤ amax,

3. and the path of points qi itself is physically realistic, or
qi+1 − (qi + q̇i+q̇i+1

2 dt) = 0.

For the third constraint, when we move qi forward us-
ing the appropriate fraction of time, velocities, and accel-
erations, the position of this projected point must be equal
to the position of the next point in the path sequence. We
handle edge cases in φ by clamping large slopes at ±100.

Note that we cannot use trajectory optimization for our
current datasets, because there appears to be no principled
and exhaustive way of calculating intermediary target points
where the constraints in the environment are constantly
changing.

10


