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Abstract. We provide an overview of the concerns, current practice, and
limitations for capturing, reconstructing, and representing the real world
visually within virtual reality. Given that our goals are to capture, trans-
mit, and depict complex real-world phenomena to humans, these chal-
lenges cover the opto-electro-mechancial, computational, informational,
and perceptual fields. Practically producing a system for real-world VR
capture requires navigating a complex design space and pushing the state
of the art in each of these areas. As such, we outline several promising
directions for future work to improve the quality and flexibility of real-
world VR capture systems.

Keywords: Cameras · Reconstruction · Representation · Image-Based
Rendering · Novel-view synthesis · Virtual reality

1 Introduction

One of the high-level goals of virtual reality is to reproduce how the real world
looks in a way which is indistinguishable from reality. Achieving this arguably-
quixotic goal requires us to solve significant problems across capture, recon-
struction, and representation, and raises many questions: “Which camera system
should we use to sample enough of the environment for our application?”; “How
should we model the world and which algorithm should we use to recover these
models?”; “How should we store the data for easy compression and transmis-
sion?”, and “How can we achieve simple and high-quality rendering for human
viewing?”. Solving any one of these problems is a challenge, and this challenge
is exacerbated by the interplay between the questions. This provides us with a
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complex design space to navigate if we wish to build practical and high-quality
systems for real-world VR reproduction.

Yet, significant progress has been made over the past 5 years in our abil-
ity to capture and display the visual properties of the real world, driven most
recently by the need to provide content for low-cost VR headsets. Many com-
pelling applications are now within reach: the broad area of telepresence, e.g.,
for VR communications; for remote operation, e.g., medical robotics; for cultural
heritage and virtual tourism; and for storytelling via documentaries, movies, and
games. We wish the tools for these applications to be simple in all stages of au-
thorship, and for the applications to be comfortable and easy to use, requiring
only novice intuition (the “can my grandparents use this?” test).

So, broadly, what issues concern us when we wish to capture the world in a
visually indistinguishably way?

Objects, Scenes, and Subjects. Typically what we wish to capture helps deter-
mine how we should capture it for later analysis or virtual reality presentation.
Capturing a single object in a studio has long been accomplished with so-called
outside-in multi-camera systems: cameras are placed to encircle or ensphere an
object and allow its multi-view capture. Generally, the more cameras we have,
the higher the quality of reproduction. Further, such controlled environment con-
ditions allow higher-quality capture than unconstrained settings, e.g., outdoors.

To capture scenes, we use an inside-out camera system in which multiple
cameras face the world. These may be arranged into a circle or sphere to capture
360° for immersive VR, though planar configurations to densely capture narrower
fields of view are also common (often called light field cameras). The distance
between the cameras—or baseline—determines for how near and how far away
we can reconstruct the geometry of the scene. Further, VR capture typically
predicates that the camera and its paraphernalia are not visible in the scene,
which informs the capture scenario design.

One special class of object exists for which much specific work has been
directed: people. As social creatures, we wish to represent ourselves realistically,
especially as many potential applications are driven by social interaction. Often,
these methods use databases of human shape and appearance to create efficient
and high-quality representations.

Photons, Rays, and Waves. Given an intended capture scenario, we next wish to
maximize our capture fidelity. Our lens systems play a significant part in overall
quality, and typically the camera configuration and lens systems are co-designed.
At the camera sensor, output fidelity spans three major axes: spatial resolution,
temporal resolution, and spectral resolution (i.e., color). Each of these must be
tempered by our ability to store, process, and eventually transmit these data.
Given that our output is to a human observer, then there is an eventual limit
beyond which no additional captured information is perceived (which, arguably,
we are fast approaching [77]).
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3DoF: rotation only 6DoF: rotation + translation

Fig. 1: VR systems provide either three or six degrees of freedom (DoF) for head
motion. Left: ‘3DoF’ lets a user look around the virtual world from a fixed point.
Right: ‘6DoF’ lets the user move in the virtual world like in the real world.

Geometry and Appearance. The raw output from a multi-camera system must
be reconstructed into a representation which is comfortable and easy to view.
For video, existing real-world capture for VR is typically monoscopic and 360°,
which requires stitching multiple camera images via a spherical proxy geometry.
Current state-of-the-art systems produce stereoscopic 360° images, which have
complex disparity challenges. Both of these are so-called ‘3DoF’ or three-degrees-
of-freedom representations describing the three rotation angles available within
a VR headset. This is insufficient to represent human motion within the headset
as humans can also translate along three axes in free space (Figure 1).

As such, one near-term goal of VR production is ‘6DoF’, which allows real-
istic response to human head and body motions and solves the disparity chal-
lenges of the stereo 360° format by allowing stereo rendering in any viewing
direction. The range of 6DoF movement available is a key concern: the larger
the ‘headbox’ required, the larger the camera baseline must be to accommodate
the eventual range of user motion. Sparser sampling of the scene requires us
to reconstruct more sophisticated scene models to ‘fill in the gaps’ during ren-
dering. Thus, depth and geometry reconstruction become critical pieces of the
processing, transmission, and render systems. Likewise, complex scene object
which display view-dependent appearance effects, such as shiny or translucent
objects, make this reconstruction and depiction problem harder.

Many representations exist, including simple proxy geometry, depth, layered
images, voxels, point clouds, signed distance fields, and textured 3D geometry.
Each has a complementary rendering system, e.g., image-based rendering or ray
casting. Each also has different compression and storage methods for efficient
transmission. Further, state-of-the-art ‘neural rendering’ learned representations
now also exist, with a ‘neural’ version of each classic representation.
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Humans as Creators. Producing VR content requires the ability to edit the cap-
tured material. These operations could be color matching between cameras, edit-
ing scene content to remove unwanted artifacts, or editing the perceptual result
such as adjusting disparity for comfort. As such, any reconstructed representa-
tion must be malleable to the editing tasks. More sophisticated productions may
wish to edit content by integrating captured and purely virtual content, which
requires a more sophisticated reconstruction such as to represent real-world oc-
clusions and integrate object lighting with illumination capture.

Humans as Consumers, Visual Expectation, and Avoiding the Visual Gap. Hu-
man perception has limitations which may be exploited. Many compelling appli-
cations—and even many users—may not need flawless reproduction, and the
positive impact of, say, stronger personal connection through immersive telecom-
munications is likely to outweigh any failures in subtle appearance reproduction.
Further, ‘indistinguishable from reality’ is different from ‘photorealistic’: we typ-
ically know when we are looking at camera-captured media, yet, this is sufficient
for much of our storytelling. Likewise, ‘perceptually realistic’ is different from
‘indistinguishable from reality’ as it lightens the burden on scrutiny. Some ‘non-
photorealistic’ depictions may help us avoid entirely complex challenges of fi-
delity and representation.

That said, VR is still a new and hopeful technology, and current limitations
which are easy to overlook at this nascent stage—especially to technologists
developing these techniques—may be more significant barriers to adoption. VR
sickness is one such issue; here, 6DoF reconstruction and rendering holds promise
to significantly reduce its effects and make VR more accessible.

2 Current Practice

Capturing the real world for rendering in virtual reality [84] is fundamentally
about creating novel views of a scene given only a sparsely sampled set of im-
ages [7,13,21,30,55,91]. These techniques are closely related to 3D reconstruction
[16] and image-based rendering (IBR) [20,92], and have many important appli-
cations in VR, including telepresence and digitizing avatars; capturing faces,
hands, or whole body performances; and capturing cinematic experiences with
dedicated VR camera rigs. Novel-view synthesis and image-based rendering are
active and long-running fields of research that have produced a large variety of
techniques and systems working towards the goal of capturing the real world in
all its visual fidelity. Many of the proposed systems share a similar high-level
structure, which is embodied by the VR Capture Pipeline:

Capture Representation RenderingReconstruction Compression

In this section, we will look at each stage of this pipeline and provide an overview
of the range of VR capture techniques and their trade-offs. For any particular
approach or system, the most important design choice is the data representation
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(a) (b)

(c) (d)

Fig. 2: Visual overview of capture approaches: (a) one static (RGBD) camera,
(b) one moving camera, (c) one moving RGBD camera, and (d) a multi-camera
capture with 16 cameras. Figures reproduced from: (a) Kopf et al. 2019 [49], (b)
Luo et al. 2018 [58], (c) Hedman et al. 2018 [33], and (d) Parra Pozo et al. [77].

to be used, as this constrains many of the other pipeline stages. In particular,
the choice constrains reconstruction, compression, and rendering.

2.1 Capture

Most virtual reality capture approaches rely on one or more color cameras to cap-
ture the visual appearance and dynamics of a scene (see examples in Figure 2).
Sometimes, special cameras are used, such as RGBD cameras which capture
depth maps in addition to color footage, or special attachments like mirrors.

One Static Camera can capture a partial view of a larger scene, typically with
perspective lenses. The content captured in this fashion can still be compelling,
as demonstrated by Facebook’s 3D photos [49], which are captured by dual-lens
cameras on commodity mobile phones to provide depth in addition to color.
However, wider views require wider camera optics, such as fisheye lenses (> 90°)
or catadioptic systems [1] for omnidirectional video.

One Moving Camera can capture more of a static scene by sweeping over it
across time. Traditional panorama stitching approaches [6,100] assume a camera
that rotates around its optical center, so that it captures all light rays converging
at a single point in space—the center of the panorama. By translating the camera
in space, even more light rays can be captured, for instance for omnidirectional
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stereo [5,78,85], layered depth panoramas [122], or 3D photography [32]. More
elaborate setups have a camera moving along the surface of a plane or sphere to
capture different portions of a light field [58,62,74].

One Moving RGBD Camera makes it easier to reconstruct the geometry of the
scene from the captured depth maps. A pioneer in this category is the KinectFu-
sion approach [68], which reconstructs a global truncated signed distance field
(TSDF) representation of a scene from registered input depth maps alone. There
are many more recent variants that improve on the scale and robustness of this
kind of scene reconstruction [17,70,113]. Alternatively, Instant 3D Photography
[33] aligns multiple RGBD images captured with a dual-lens camera into a con-
sistent textured 3D panoramic surface.

Multi-Camera Rigs are required for video capture and to capture multiple view-
ing directions simultaneously. Consumer 360° cameras are now commercially
available as commodity devices that stitch two or more video streams into a sin-
gle 360° video [53,80,110]. Stereo cameras capture two viewpoints side by side,
and their baseline can be magnified in post production [123]. Multiple viewpoints
can also be interpolated and manipulated in a post-process after video capture
[56]. A ring of video cameras captures sufficient information for compelling om-
nidirectional stereo video [3,9,86], while a rotating camera rig can even capture
live omnidirectional stereo video [48]. The Facebook Manifold camera [77] has
16 cinema cameras in a large sphere configuration to evenly capture views in all
directions. Light fields [25,30,55] are based on a dense sampling of viewpoints,
which requires many co-located cameras. A different camera setup distributes
cameras on a dome or around a capture volume, for example to capture objects
and people in a light stage [19] or as volumetric video [15].

2.2 Reconstruction

Reconstruction interprets and combines the information contained in the cap-
tured imagery to create a unified model. The first step is often camera calibration
and structure from motion, i.e., characterizing the imaging devices used, includ-
ing their lens distortion, and determining which views of a scene they captured.
Multiple structure-from-motion implementations are publicly available, includ-
ing Bundler [95], VisualSfM [116], AliceVision [41,64], MVE [27], Theia [98]
and COLMAP [87], with the latter currently enjoying the widest use. However,
general-purpose structure-from-motion tools do not perform well for the kind of
inside-out capture commonly used for environment capture [5,32]. This has led
to the development of specifically tailored structure-from-motion solutions that
assume camera motion on a spherical surface [99,108], which is a good match for
handheld [5,32,85] or spherical [58,74] capture approaches. One of the outputs
of structure from motion is also a sparse 3D point cloud of feature points in the
scene, which can be useful for image alignment [53] or view warping [36].

Once the viewpoints are reconstructed, the next step is generally to com-
bine all the captured information into a single model of the scene. In classical
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panorama stitching, this is achieved by aligning and blending the individual in-
put views on a spherical or cylindrical image surface [6,100]. While still panora-
mas can hide alignment artifact to some degree using clever stitching or blending
approaches [32,120,121], this becomes much harder for panoramic videos, as the
visual content, and hence any artifacts, keep changing over time. To address this,
the stitching needs to vary over time in accordance with the scene [53,80,110].
To achieve more complex projections, such as the multi-perspective omnidirec-
tional stereo (ODS) projection [39,78], requires dense correspondence between
input views so that intermediate views can be synthesized [3,9,85,86]. Most ap-
proaches use optical flow for this purpose, as it provides useful flexibility in case
of calibration errors or scene motion.

The reconstruction of 3D geometry goes beyond the purely image-based ap-
proaches discussed before by recovering the 3D structure of a scene or object.
Most approaches start by estimating per-view depth maps using multi-view
stereo (MVS) techniques [28,37,88,89] or deep learning [33,71,90], unless depth
maps are directly available from RGBD cameras. In theory, these per-view depth
maps can be integrated into a global geometry model of the scene [12,32,90] if the
camera poses and depth maps are estimated sufficiently accurately. Approaches
such as KinectFusion [68] and BundleFusion [17] integrate noisy depth maps
over time to improve the accuracy of the surface reconstruction. Having a large
number of views also leads to a cleaner geometry reconstruction [15]. Hedman
et al. [33] introduce a locally varying depth map alignment step to integrate
differently normalized depth maps from mobile phones or neural networks into a
globally consistent depth map. However, because of calibration and depth esti-
mation errors, better view synthesis results can often be obtained with per-view
geometry [11,35,74] that is smoothly blended across the synthesized novel view.

2.3 Representation
Over the years, various approaches have been proposed for representing captured
scenes or objects. View synthesis techniques can be classified by how heavily
they rely on the input image data vs. proxy geometry in their representation.
For example, light field rendering [55] represents one extreme that does not use
any geometry at all, but that requires densely sampled input views, whereas
conventional 3D rendering with polygon meshes and textures is the other ex-
treme in requiring detailed geometry but few input images (i.e., the textures)
for the rendering. Geometric representations of a scene can be either modeled
or estimated from the input images, for example using classical 3D computer
vision pipelines [31,101]. To provide an overview, Shum et al. [91,92] organized
representations along a continuum according to how much geometry they use:

– No geometry refers to purely image-based approaches, such as panoramas or
360° video.

– Implicit geometry comprises approaches using posed images and/or relying
on 2D image correspondences, such as optical flow.

– And explicit geometry includes textured meshes or point clouds with actual
3D geometry.
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Fig. 3: Updated continuum of image-based rendering representations, inspired
by Shum et al. [91,92]. Please see the discussion in Section 2.3 for details.

Figure 3 contains an updated version of Shum et al.’s continuum of representa-
tions and Figure 4 illustrates examples from across this continuum.

There is no universally best representation—all have their advantages and
disadvantages and provide different trade-offs. There is also often no hard bound-
ary between representations, so there is some overlap; hybrids that combine mul-
tiple representations are also possible. In the limit, i.e., with infinite resolution,
the representations are theoretically interchangeable. However, any conversion
always requires resampling, which is usually a lossy process that reduces overall
fidelity. There are usually also practical limits: for example, the physical size of
cameras which limits the maximum camera density that is achievable in practice.

Images and Panoramas provide the most basic snapshot of what a scene or object
looked like. They represent a photographic likeness that captures visual appear-
ance of a scene or object from a single point of view with a fixed field of view.
Panoramas [6,100] and 360° videos [53,80] capture a wide or even complete field
of view. Images and panoramas enjoy great popularity as they are easy to cap-
ture with modern mobile phones and consumer cameras, and are straightforward
to share. However, their main limitation is that they only provide information
for a single point of view (i.e., only 3DoF) and no depth perception, and thus
do not support any translational change of viewpoint.

Light Fields represent a dense spatio-angular sampling of a scene [55], generally
using a regular 2D grid of camera viewpoints. More general camera configura-
tions are supported by the Lumigraph [30], a closely related variant of light fields.
As the comprehensive coverage of an object in a scene is challenging to obtain
in practice, Davis et al. [18] proposed a guidance approach that helps users in
capturing missing viewpoints. Videos captured with a moving camera can also
be considered to be a densely sampled light field along the camera path, which
can be exploited for particularly accurate scene reconstruction [45,119].

Omnidirectional Stereo (ODS) is a multi-perspective, circular projection [39,78]
that has become a popular medium for stereoscopic and 360° VR photos and
videos [3,9,85,86]. ODS encodes two panoramic views—one for the left eye and
one for the right eye. This has the advantage that there is binocular disparity—
and hence the perception of depth—in all viewing directions along the equator,
though distortion exists away from the equator (Figure 5). The format is an ex-
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Viewing
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Fig. 4: Visual examples that illustrate the range of image-based rendering repre-
sentations: (a) panoramas [80], (b) light fields [119], (c) omnidirectional stereo,
(d) posed images [95], (e) layered representations such as multiplane images [62],
(f) voxel grids with deep features [69], (g) textured geometry [33], and (h) point
clouds [71].

cellent fit for existing video processing, compression, and transmission pipelines,
as both views are encoded in a single top-bottom configuration.

Posed Images have known camera geometry (camera position and orientation)
in addition to the image data. This enables scene reconstruction in the form of
point clouds using multi-view stereo. Even sparse point clouds are sufficient for
providing a compelling overview of community photo collections as demonstrated
by Snavely et al.’s PhotoTourism work [95]. Novel views can be interpolated from
existing ones by establishing correspondences between adjacent viewpoints. In
practice, optical flow is often used for flow-based blending [3,5,58,85,86], which
significantly reduces blurry ghosting artifacts and produces results with high
visual fidelity.
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Fig. 5: Omnidirectional stereo introduces vertical distortion as cameras lie on
a larger circle than the viewing circle. The red faces, as seen by the camera,
appear vertically stretched (blue faces) when rendered using parallel rays for a
viewpoint behind the camera. Figure adapted from Anderson et al. [3].

Layered Representations consist of multiple semi-transparent layers that encap-
sulate the appearance of a scene or object without any explicit geometry. The
underlying core idea goes back to Disney’s multiplane camera (1937), in which
multiple transparent cel sheets are positioned at different depths from the cam-
era. This allows each cel sheet to be moved independently and creates the effect of
motion parallax over time. Early approaches by Wetzstein et al. computed lay-
ered representations using custom-tailored optimization frameworks [111,112].
Recently, advances in deep learning have revived and accelerated progress in the
reconstruction of so-called multiplane images (MPIs) [25,62,97,123].

Voxel Grids can represent regularly sampled occupancy (‘filled or empty’), color,
opacity, or distance (e.g., truncated signed distance fields [68]) to enable novel-
view synthesis. Managing memory as a resource with voxel grids is critical given
their n3 nature, and octree-based voxel grids are possible. New voxel grids storing
deep features [57,69,93,106] aim to enable novel-view synthesis at a higher quality
but with a lower memory use. We discuss this emerging work on neural scene
representations in more detail in Section 3.

Textured Geometry makes it easy to render novel views in real time with exist-
ing 3D graphics pipelines, even on mobile devices. Mesh geometry is particularly
good at modeling hard occlusion boundaries, but it needs to be reconstructed
accurately from usually noisy depth maps. For the highest quality depth maps,
many observations from different viewpoints need to be combined, for exam-
ple for volumetric video [15] or Google’s light fields [74]. One consumer-facing
example are Facebook’s 3D Photos [49], which are based on an image and lower-
resolution depth map from an off-the-shelf mobile phone. The final 3D photo can
be looked at from different directions by tilting the phone. Several approaches
separate foreground and background objects in a scene into multiple textured
layers [32,33,90,122], to preserve clean occlusion boundaries. This generally re-
quires some kind of inpainting to fill the areas behind foreground objects. In the
real world, the appearance of objects also often depends on the viewing direction,
e.g., when objects are shiny. This effect can be modeled using surface light fields
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[114] or view-dependent blending [34]. In general, modeling and editing favors
geometric approaches, as there are better software tools available for textured
meshes than other representations.

Point Clouds represent a scene as an unordered collection of points, which may
or may not have colors and/or surface normals. They are readily obtained from
structure-from-motion and multi-view stereo tools, RGBD images [71], or Lidar
scans of a scenes. However, they are inherently sparse, tend to be noisy and
non-uniformly distributed in reconstruction space (rather than camera space),
and contain gaps that make them impractical for rendering high-quality novel
views (although this is slowly changing thanks to neural re-rendering [61]). Nev-
ertheless, they are often a useful intermediate representation or debugging tool.

2.4 Compression

Raw scene representations can become very large (hundreds of gigabytes). This
can make them difficult to store given limited space on disk or in memory,
to transmit over networks in a reasonable time, or even to render them in real
time. Thus, compression and decompression are indispensable for practical scene
capture and rendering systems.

The light fields introduced by Levoy and Hanrahan [55] in 1996 were up to
1.6 GB in size. This would easily fill a large hard drive at the time, and would
never fit in memory. However, light fields are highly redundant within images and
between images, so they are highly compressible. Levoy and Hanrahan designed
a custom light-field compression scheme that combines vector quantization of 2D
or 4D tiles (24:1 compression) with gzip entropy encoding (another 5:1 compres-
sion) for a total compression of 120:1. This scheme allowed fast random-access
decompression entirely in software, so that real-time rendering became feasible.

Recently, image compression techniques such as JPEG have become compu-
tationally affordable, even in real-time applications. Existing video codecs, such
as h.264 and h.265, can also often be used directly for compressing video-based
representations, such as 360° video [53,80] or omnidirectional stereo videos [3,86].

Collet et al. [15] encode their volumetric free-viewpoint videos in a stan-
dard MPEG-DASH file. Thanks to mesh tracking, their geometry has a tem-
porally consistent parameterization. Therefore, the resulting texture atlases are
unwrapped consistently and can be compressed effectively using the standard
h.264 video codec. The mesh geometry is encoded as a custom unit inside the
video stream and compressed using linear motion prediction, 16-bit quantization
of vertex positions and UV coordinates, and Golomb coding.

Google’s panoramic light fields require 4–6 GB of image data each [74] and
so also need compression. As for the original light fields paper [55], fast random
access is required for rendering novel views of the light field. Overbeck et al. [74]
build on the open-source VP9 codec and encode most light field images relative
to a sparse set of reference views, which are like key frames in standard videos.
In practice, they decode all reference images when loading the light field from
disk and keep them in memory. They also contribute an extension to VP9 that
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enables random access to individual image tiles. This allows their system to
decode any tile from any other image immediately. Most light fields can hence
be compressed at high quality by 40×–200×.

2.5 Rendering

The final step of the VR capture pipeline is to render the novel views correspond-
ing to the user’s location, so that they see the correct views of the captured scene
as they move. Most rendering approaches adopt the standard graphics pipeline,
which has the benefit of efficient hardware implementations across a large range
of devices, from mobile to desktop setups. This efficient rendering hardware en-
ables rendering in real time, and even hitting the high frame rates of 80–144 Hz
required to feed state-of-the-art VR head-mounted displays [50].

Panoramas and omnidirectional stereo content only require a change to per-
spective projection to be viewed by users. This does not require any explicit ge-
ometry and can be implemented in 2D or, equivalently, by using textured spheres
viewed from virtual perspective cameras. Many other approaches also use tex-
tured geometry directly [17,32,33,68,90]. Even multiplane images [25,62,97,123]
can be rendered using textured geometry, by texturing the semi-transparent lay-
ers on parallel planes that are appropriately spaced, and using alpha compositing
in the z-buffer during rendering.

Modern graphics pipelines are also programmable using shaders, which pro-
vides an opportunity to influence the rendering more locally depending on the
viewing direction, for example. Flow-based blending has been used to interpolate
novel views on the fly [58] and per pixel or light ray [85], also in a view-dependent
fashion [5]. When many input views are combined to synthesize novel views, they
also require spatial blending to ensure smooth transitions [74]. Ultimately, the
decision of how to blend multiple observations of a single surface point can even
be optimized using a deep neural network [34]. However, evaluating the neural
network per frame at run time noticeably impacts the overall frame rate that is
achievable with this approach, which does not yet reach real-time rates.

3 Neural Scene Representations and Rendering

Over the last few years, a new class of algorithms has emerged that has great po-
tential for capturing, representing, and rendering real scenes in virtual environ-
ments—neural scene representations and rendering. The idea behind these algo-
rithms is similar to classical approaches: given a set of input views, distill these
into an intermediate representation, and then render the scene from novel view-
points using the intermediate representation. However, a neural representation
differs from a classical scene representation, such as a polygon mesh, a 3D point
cloud, an implicit function, or a voxel grid, in being differentiable with respect
to its parameters. In combination with a differentiable renderer that takes the
neural scene representation as well as a camera position and orientation, i.e., a
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pose, as input and computes a 2D image from the camera’s perspective, neu-
ral scene representations allow for end-to-end optimization of the representation
supervised only on the images.

For example, Sitzmann et al. [93] recently proposed a voxel representation
where each voxel is located in a Cartesian grid and stores a feature vector. A
differentiable renderer with occlusion reasoning then projects these 3D features
into 2D images and a 2D image-to-image translation rendering network then
converts the projected features into the RGB values of the final images. During
training, the weights of the voxel features are optimized given only a set of posed
RGB images of the scene. Once optimized, the neural voxels can be rendered into
2D RGB images given an arbitrary camera pose. Due to the fact that the inter-
mediate voxel representation is inherently defined in a three-dimensional space,
all projected views will be approximately consistent across different camera per-
spectives. This can be interpreted as choosing a neural network architecture that
is aware of the 3D structure of the scene, simply by choosing an adequate scene
representation. Several different classes of neural scene representations have been
proposed over the last few years, which we briefly outline in the following.

Image-based Rendering with Deep Flow Prediction and Learned Image Blend-
ing. Recently, deep learning has been used to aid image-based rendering via
learning subtasks, such as the prediction of occlusion-aware optical flow between
views [42,43,75,124] and/or the computation of the blending weights [26,34].
While this approach can achieve photorealism, it depends on a dense set of
high-resolution photographs to be available at rendering time and requires an
error-prone reconstruction step to obtain the geometric proxy.

Unstructured or Weakly Structured Latent Representations. Other approaches
aim at distilling an intermediate representation, or embedding, from the images.
The benefit of such an approach is that the input views may not be necessary
during inference anymore, after the embedding is learned. This is beneficial for
multiple reasons: the used computational resources (such as memory) can be
optimized; embeddings have the potential to disentangle different effects, such
as lighting, shading, geometry etc., which can make them more interpretable
or potentially even editable [51,60,117]; embeddings can sometimes also be in-
terpolated or new examples within this latent space could even be generated.
Therefore, learning structured embeddings is a topic of great interest.

Several approaches have been proposed that rely on embedding views into
a latent space, but without enforcing any geometrical constraints [22,24,103].
Weakly structured embeddings [14,83,115], such as learning rotation-equivariant
features by explicitly rotating the latent space feature vectors, have also been
proposed. However, all of these approaches have in common that there are little
to no guarantees that the synthesized views create consistent perspective pro-
jections because the underlying network structures do not enforce or capture
the 3D structure of the scene explicitly. In other words, the choice of embedding
captures the structure of the data weakly or not at all.
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Using Proxy Geometries and Neural Textures. In many applications, such as
reconstructing faces [125], hands, or whole body performances, we have detailed
prior knowledge of the types of objects in the scene. For example, the image or
3D model of a face can be well described by a blendshape—a low-dimensional
geometric basis function representation that only requires a few coefficients to
model the face. Nonlinear optimization can be used to fit a blendshape represen-
tation to an image or video or a face. Similarly, parametric representations of
hands or bodies exist and can be used to fit a 3D proxy geometry to 2D images
or videos. Although such proxy geometries represent a good first-order approxi-
mation of the underlying shape, many subtle details of the appearance, like the
interior of the mouth, facial hair, or other perceptually important details, are
typically not modeled in a convincing manner. However, such proxy geometries
have great potential for neural scene representations because they can be ren-
dered using existing computer graphics pipelines from arbitrary perspectives. To
adequately model the appearance using a neural scene representation, a clever
idea is to use the proxy geometry and texture it with a 2D texture containing
learnable features. These features can then be optimized in a training stage for
a given example image or video and later re-rendered. This approach uses little
memory, because we do not have to learn a 3D model but only a texture and the
neural renderer is a simple 2D (convolutional) neural network that computes an
image-to-image translation from 2D features to RGB pixel values. This idea has
so far been applied to deep video portraits [46] and it has been explored as a
more general concept of neural textures [104].

One of the limitations of parametric representations is that they exist only for
specific types of objects, such as faces, hands, and bodies. However, the idea of
proxy geometry can also be applied to more general 3D computer vision pipelines.
In this case, the reconstructed geometry is often coarse, it can have holes or it
may be missing other parts. Yet, such an incomplete or noisy point cloud or mesh
can still be easily rendered into arbitrary camera poses and an image-to-image
translation network could then learn how to map from the incomplete projection
of the point cloud to a photorealistic image. This idea was recently explored by
Martin-Brualla et al. [59] and represents another example of combining proxy
geometry with a differentiable (part of a) renderer.

Multiplane Image Representations. Many recent proposals on neural scene rep-
resentations are based on the idea of decomposing a set of input views, or a
light field, into a layered representation that can be re-projected into the input
views but also into novel views. This is another example of using proxy geometry
along with learnable parts, but the proxy geometry is a simple set of planes that
can easily be projected into different cameras using homographies. Wetzstein
et al. [52,111,112] optimized such representations for display application from
densely sampled input light fields via computed tomography or non-negative
matrix and tensor factorizations. More recently, deep learning based approaches
have been proposed to optimize such representations using the input of small
baseline stereo cameras [97,123], from single-input image [105], or from four in-
put images [25] with learned gradient descent. The primary challenge in these



Capture, Reconstruction, and Representation 15

Whole scene LFI [10] ULR [7]

Soft3D [79] Deep BW [26,43] LLFF [62]

Fig. 6: Visual comparison of view synthesis results on the challenging T-Rex
scene between traditional and neural rendering approaches. Light field interpo-
lation [10] fails to align objects at different depths. Unstructured lumigraph ren-
dering [7] suffers from poorly reconstructed geometry due to the thin ribs. Soft
3D reconstruction [79] shows blurry views caused by depth uncertainty. Deep
backwards warping [26,43] exhibits visual artifacts near occlusion boundaries
like the thin ribs. Local light-field fusion [62] smoothly blends neighboring local
light fields to render novel views to minimize visual artifacts. Figure adapted
from Mildenhall et al. [62].

deep learning based approaches is to work with a set of sparsely sampled in-
put views and ensure that the views synthesized in between these given images
look perceptually realistic. Another related approach recently proposed guided
camera placement for such irregularly sampled light fields [62]. Most of these
layered view synthesis approaches optimize RGBA color values at each posi-
tion of the layers. The additional alpha channel allows for transparency-aware
“soft” reconstructions by blending the layers for perspectives from different cam-
era perspectives [79]. Figure 6 shows a visual comparison of classic and learned
multiplane view synthesis approaches.

One benefit for multiplane image representations is that they are simple
and, once optimized, enable real-time rendering of the layered representation. A
downside is that novel views can only be synthesized over a limited baseline, i.e.,
we cannot synthesize novel views that look at the layers from the side.

Deep Voxel Representations. Another specific type of proxy geometry is a voxel
grid, which overcomes the limited-baseline issue of sparse layered representa-
tions. For example, Sitzmann at al. [93] proposed an occlusion-aware volume
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Fig. 7: Interpolating latent code vectors of cars and chairs in the ShapeNet
dataset while rotating the camera around the model. Features smoothly transi-
tion from one model to another. Figure reproduced from Sitzmann et al. [94].

renderer in combination with a grid of features that is trained only on posed 2D
RGB images of a scene. Nguyen-Phuoc et al.’s HoloGAN [69] shows that deep
voxel representations can also be learned from natural images in an unsupervised
manner. The implicit deep 3D features enable disentangling of 3D pose and ob-
ject identity, which can further be decomposed into shape and appearance. A
different variant of this idea was recently shown to be able to generate real-time
3D reconstructions of human faces and actors [57,109]. One of the downsides of
voxel representations is the relatively high memory footprint required to store
all the voxels. Representing RGBA values or feature vectors on a Cartesian grid
has the benefits of allowing convolutions and other intuitive operations to be
performed on the grid [73], for example using a convolutional neural network,
but another downside is that values have to be stored at all locations of the grid,
even if there is no object there.

Deep Point Cloud Representations. Differentiable point clouds have the po-
tential to overcome some of the memory limitations of layered or voxel-based
representations by adaptively changing the positions of the points [118]. This
relates to the approach of Martin-Brualla et al. [59] who used a fixed (i.e., non-
optimizable) proxy geometry. Neural re-rendering of point clouds is a promising
postprocessing step that not only fills in gaps in rasterized point cloud render-
ings [2], but also also provides control over scene appearance [61]. A challenge
of working with differentiable point clouds is to update the locations of the 3D
points by backpropagating through a differentiable renderer, such as a splatting
algorithm.

Continuous Neural Representations. Finally, differentiable continuous scene rep-
resentations have also been explored. For example, Park et al. [76] recently pro-
posed to model a signed distance function as a neural network and train it to
learn an object’s shape supervised on a 3D model of that object. Sitzmann et
al. [94] introduced a differentiable renderer for such continuous scene represen-
tations to be able to train it in an end-to-end manner supervised only by posed
2D RGB images. Moreover, their approach allows for the scene representation to
be generalized across object classes, enabling interpolation of the representations
(see Figure 7), generating entirely new objects of a specific class, or fitting a 3D
representation to a single 2D RGB image.
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Fig. 8: One way to conceptualize our design-space trade-off is as one between
model- and image-based methods. Model-based techniques tend to suffer ‘un-
canny valley’ effects where the world appears only almost real, which is off-
putting for human reproduction. On the other hand, image-based techniques
exhibit characteristic artifacts which reduce quality and are easy to identify as
‘unreal’, such as sampling and compression artifacts. Our goal is to find a repre-
sentation which minimizes both effects. Reproduced from whiteboard discussions
with Brian Cabral and colleagues at the Dagstuhl RealVR seminar (July 2019).

In summary, different variants of neural scene representation are emerging
and show great potential to applications in capturing, representing, and render-
ing real environments in VR and beyond.

4 Limitations of Current Practice and Future Research Directions

Thus far, we have described current practice; next, we will discuss limitations of
current practice and potential future research directions to overcome them. One
useful framing device to help conceptualize these limitations is by what type of
artifacts they introduce and by how much it affects the overall experience (Fig-
ure 8). Model-based approaches tend to introduce world inconsistencies which
make them look fake, e.g., incorrect geometry, missing translucency or specu-
lar reflections, or suffering from Uncanny Valley effects in the case of humans.
Image-based approaches introduce a different axis of artifacts relating to resolu-
tion and sampling, interpolation and warping, and tell-tale image compression
errors. Navigating the design space between pure model-based (e.g., classic com-
puter graphics) and pure image-based techniques (e.g., dense light fields) exposes
our world reproduction to many artifacts; throughout these operations, our goal
is to remain within some human-perception tolerable region which minimizes
both world fakeness and image artifacts.

Saturating the Senses (Vision): Current technologies for capture fall short of
convincing real-world depiction purely from a raw pixel perspective, but are
perhaps closer than you might anticipate. While perception varies from person
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to person, for spatial resolution, Facebook’s Manifold camera [77] with 8K RED
sensors over 180° (≈0.0225° resolution) is approaching the needed spatial reso-
lution to match 20/20 visual acuity (0.0167° resolution). Temporal sampling of
60 Hz (16.6 ms per frame) is also approaching experimental rates for the task of
individual image recognition (at least 14 ms [44]), though flickering artifacts can
be seen at higher framerates. Static human eye dynamic range is relatively low
(100:1, or 6.5 stops) vs. the approximately 15 stops available on the sensor [23],
though eye dynamic contrast is extremely large (1014, or 46 stops) and sensi-
tive to very low luminance levels (10−6 cd/m2). While signal-to-noise ratios are
improving at high ISO levels, the sensor would still struggle to produce a non-
noisy image at this light level. This high sensitivity and low noise improves color
reproduction. Binocular stereo provides depth cues from eye vergence, which is
reproduced through multi-view renderings of the multi-camera reconstructions
of the world geometry.

On the display side, current technologies also fall sort but may be closer
than anticipated. The current best-in-class headset (Valve Index, September
2019 [107]) has a display panel resolution of 1440×1600 pixels per eye, and an
LCD panel with dense subpixels to reduce the ‘screen door’ effect. Over a field of
view of ≈130°, this provides 0.09° resolution. Temporal resolution is up to 144 Hz.
One limitation with headsets is eye accommodation to allow focusing. This can
be accomplished with very dense sensors for near-eye light field displays [52], or
to use eye tracking and variable-depth displays [50].

These limits highlight the general quality issue with reconstructing imagery
into VR-rendered representations: that the fidelity of the representation must
match the fidelity of the display. Capture pixel resolution currently outstrips dis-
play resolution, but our true problem is one of reconstructing a representation
which, when rendered, still saturates the display. This is easier for image-based
rather than model-based reconstruction methods as they are ‘closer to the cam-
era’, but image-based methods can limit another of our key senses: motion.

Saturating the Senses (Motion): Vision combines with the vestibular and pro-
prioception senses to provide human beings with an awareness of motion. This
must be keenly attended to in VR, with reproduction of motion parallax and
occlusion required to achieve 6DoF video. However, the ‘headbox’ of allowable
motion is limited by the baseline of the capturing camera system. Most 6DoF
camera systems have baselines smaller than one meter; practically building and
using a larger camera system is challenging. Beyond this, content must be hal-
lucinated (or inpainted) in a plausible way [123], for which we can only expect
‘good at best’ quality and which becomes harder and harder as we move farther
outside the baseline.

Motion also requires fast display pose estimation; head-motion rotation veloc-
ity in daily life can achieve 9 radians per second [8]. Current outside-in tracking
systems (Valve Index) and inside-out (Oculus Quest [72]) provide millimeter-
level tracking at sufficient framerates to meet their display framerates, though
precise details are unspecified. Future work in this area will aim to track more
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of the human body beyond the head (hands, full-body pose) to allow greater
interaction with our reconstructed VR worlds [50].

Capturing Everything Easily: Casual capture is another area of persistent need.
Professional cameras and workflows are expensive and require expertise, and few
systems exist to allow novice users to capture a scene with cheap hardware. For
static scenes, casual capture can exploit the space/time swap: that space can be
traded for time by moving the camera [5]. This lets the user ‘sweep over’ the
scene from different poses, say with a smartphone, to complete the capture [68].

However, much interesting content is of dynamic scenes, which requires algo-
rithms and representations to be temporally consistency. This is a much stricter
requirement on accuracy as human sensitivity to perceptual effects over time is
strong, e.g., any flickering at the edges of objects within a geometry reconstruc-
tion is particularly noticeable. Representations which explicitly accommodate
time can also help; one example is spatiotemporal atlases for time-varying tex-
ture and geometry [81], but future work is needed for other representations along
the image-to-model-based spectrum.

Complex material acquisition is another limitation and area of significant
future work. Beyond simple Lambertian diffuse texture, we need to represent
materials with shiny or glossy reflectances via 4D BRDFs, and to be able to cap-
ture transparent materials like glass. Without these effects, the world can look
fake as objects do not visually respond realistically to human motion. Some meth-
ods exist for spatially-varying BRDF capture of objects from smartphones [67],
but scaling these to whole scenes requires sampling many directions and is typi-
cally not possible for dynamic scenes. This suggests further work in data-driven
methods to fit known material models to sparse scene samples.

Similarly, we also wish to capture complex illumination, typically for editing
applications like object insertion or relighting [60]. 360° imagery can act as en-
vironment reflection maps for lighting objects [102], but illumination estimation
from perspective views is an ill-posed problem and requires learning-based meth-
ods [29,54]. Future work into plausible illumination reconstruction using inverse
or differentiable rendering techniques holds promise.

Finally, to go beyond visual reproduction and into complex editing and inter-
action, capture must extend beyond representations of geometry and appearance
and into object and scene semantics [47], context via hierarchical scene and re-
lationship graphs [82], and even the capture of other physical properties such
as aural properties, functional properties like mechanical actuation and articu-
lation, and material properties like mass and elasticity.

Big Data Problems: Cameras which saturate our senses will produce terabytes
of data for video sequences of just a few minutes in length. This question of
compression is one that may initially seem tantalizingly simple because of the
high level of redundancy in the data, e.g., for light field or 6DoF imagery, where
each view is ‘just a little bit different’. However, the minor differences in these
samples are often what makes the viewing effect convincing.
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Some representations focus on compression, storage, and transmission fac-
tors, such as formats that fit within a classic 2D video pipeline, like side-by-side
omnidirectional stereo or RGB+D 360° representations [90]. Here, changes in
time are well-handled. However, compressing in screen space in 2D can signifi-
cantly limit flexibility and ultimately quality, making correct occlusion and mo-
tion parallax difficult. Scene-space reconstruction and parameterization allows
these effects; however, for geometry-based reconstruction representations, these
changes require more work to maintain temporal handling for easy compression.
Work in 4D geometry from video addresses some of these challenges for human
avatars [65,66], but representing larger dynamic scenes is still complex.

Our discussion in this chapter has also implicitly considered pre-recorded and
post-processed data, but one significant area of future work is in producing high-
quality representations and systems for live or streamed experiences. Future work
is needed to produce real-time reconstruction approaches which exploit any and
every natural redundancy in the data to reduce computation time and network
transmission.

Perceptual Realism: We can capture to saturate human senses, and we can
capture precise geometry, illumination, and materials for physically-based and
model-based representations, but this still leaves many other challenges relating
to perceptual effects. One classic effect discussed above is the uncanny valley [63],
which hypothesizes perceptual effects to robot appearance and now has a casual
understanding relating to digital human avatars. This effect is poorly understood
and hard to quantify, particularly for geometry. Approaches to hide the problem
with stylization can be successful. However, principled progress requires future
work in better computational models of human perception, especially models
which are differentiable and so can be used to optimize a (neural) reconstruction
function. These would allow faster exploration of a complex design space for
capture, reconstruction, representation, and ultimately display by narrowing to
only those effects we will see (and see comfortably).

Neural Rendering: Neural rendering techniques are plentiful and promising, with
the space of possible techniques currently being explored. Neural scene represen-
tations exist to aid capture, stylization, hallucination, and view synthesis. That
said, there are a few caveats with scene generality, representation size, real-time
rendering, and editability.

The scene generality limitation is that many current techniques learn a neural
representation which is specific to just one object or scene. This approach allows
high-quality rendering, but new scenes require retraining the networks from new
training data [34,93]. Future work to increase generalizability should look at how
to resolve the trade-off between network capacity and quality. This problem is
also related to the size of the neural representation and the ability to render
quickly. Each network has millions of parameters and requires a large GPU to
process, which limits their applicability via memory, rendering, and distribution
costs. Future work should investigate efficient and compressible representations
for neural scene rendering.
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Finally, one benefit of physically-based scene models is that they can be
edited easily. This is not the case for most neural representations, which have
obtuse ‘black box’ representations which are difficult to inspect let alone edit.
Current works attempt to build interfaces to help understand the generation
process for 2D image synthesis [4] and steer it towards exposing more useful
controls [40]; these must be extended for neural scene rendering to be useful for
VR. Going forward, effort should be placed in constraining the learned repre-
sentations to be implicitly editable in predictable ways.

Tools and Workflow: The question of editable representations—both classic and
neural—highlights the critical role of tools and workflow in the capture and re-
construction pipeline. This area is often overlooked by academia but is vitally
important; it requires partnerships between industry and academia to make re-
liable progress in tools that are actually adopted.

One question is the ease of use: hardware and software tools are currently
catered towards experts, and casual capture is important, but both sets of users
would benefit from representations which allow easier processing and manipula-
tion of data. The problem is that different representations are better or worse
for different tasks, and so the choice of production capture and representation
often depends upon the scene content. For example, distant content can be bet-
ter as an image-based representation to maximize image quality (suggesting 360°
video), but up-close content can be better as depth- or model-based reconstruc-
tion to maximize realistic motion effects (suggesting depth or multi-view camera
capture). The ‘chicken and egg’ problem of not knowing which systems to use
until the content is captured lacks flexibility, and this has knock-on effects for
the post-production workflow that also depends on the representation.

If the best representation for the job is task specific, then the underlying
question could be one of how to allow easy conversion between representations.
Most conversion operations require resampling, which is often lossy. This con-
version must also happen quickly and be memory efficient to allow engineers and
artists to flexibly pick the best representation for the task at hand.

Editing tools themselves for multi-view content are also nascent, with limi-
tations both in low-level reconstruction for matting and depth/layer decompo-
sition, for interactive user operations like selection, geometry and appearance
editing, and for imagery integration operations like compositing and CG in-
sertion. Each of these tasks must be completed in spatio-temporally consistent
ways, which requires high-accuracy reconstruction and typically some form of
additional explicit consistency constraint.

While the craft has made significant progress over the past five years, we
also lack higher-level tools and understanding for storytelling in VR, especially
to allow novice users to express their experiences and ideas. In principle, VR
can be a powerful method of ‘experiential storytelling’—to put the viewer in the
shoes of another. Efforts to reduce the cost and increase the ease of use and
accessibility of our creative tools will democratize the capture, reconstruction,
and editing pipeline and help more people tell effective stories.
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Trust and Privacy: One new area of research is in building reconstructions and
representations which respect privacy. This topic is often seen as more press-
ing for augmented reality systems (above VR systems), for which real-world
capture, reconstruction, and representation techniques are equally as important.
Scene capture can often include other humans who have not given permission for
their representation, and these people may need to be anonymized in a realistic
way [38]. Recent work has also looked at ways to prevent information leakage via
unwanted scene reconstructions of people’s homes derived from AR/VR headset
tracking structure-from-motion systems [96]. Likewise, future work is needed on
the security of information contained within neural representations.

5 Conclusion

If VR is to become more than just a technology for synthetic scenes—to use its
powerful telepresence capability to impact domains across industry, commerce,
healthcare, and the arts—then we must be able to capture and reproduce the
dynamic visual world with high fidelity. We have discussed a range of existing
and state-of-the-art solutions to capturing, reconstructing, representing, trans-
mitting, and rendering the world for VR applications. Challenges remain: find-
ing the sweet spots in the complex design space is difficult, and fundamental
trade-offs about capture sampling and reproduction quality still remain. How-
ever, new neural representations which combine geometry proxies and learned
appearance representation functions offer one potential approach to overcom-
ing these trade-offs with domain-specific data-driven representations. Even with
these challenges, the field of VR has made significant progress in the past five
years, and capturing and distributing the real world is now easier than ever.
We await the coming progress over the next five years with bated breath, par-
ticularly for VR’s potential to improve the quality of telecommunications and
ultimately reduce our carbon footprint by reducing the need for travel.
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