Computers & Graphics (2022)

journal homepage: www.elsevier.com/locate/cag

Contents lists available at ScienceDirect

Computers & Graphics

&GRAPHICS

Dynamic Scene Novel View Synthesis via Deferred Spatio-temporal Consistency

Beatrix-Emd&ke Fiilop-Balogh?, Eleanor Tursman®, James Tompkinb, Julie Digne®, Nicolas Bonneel“*

@Univ. Lyon, UCBL, France
bBrown University, Rhode Island, USA
¢Univ. Lyon, CNRS, France

ARTICLE INFO ABSTRACT

Article history:

Received 27 April 2022

Received in final form 5 July 2022
Accepted 18 July 2022

Available online 25 Juy 2022

2000 MSC: 68U05, 68T45

Structure from motion (SfM) enables us to reconstruct a scene via casual capture from
cameras at different viewpoints, and novel view synthesis (NVS) allows us to render a
captured scene from a new viewpoint. Both are hard with casual capture and dynamic
scenes: SfM produces noisy and spatio-temporally sparse reconstructed point clouds,
resulting in NVS with spatio-temporally inconsistent effects. We consider SfM and NVS
parts together to ease the challenge. First, for SfM, we recover stable camera poses,
then we defer the requirement for temporally-consistent points across the scene and
reconstruct only a sparse point cloud per timestep that is noisy in space-time. Second,
for NVS, we present a variational diffusion formulation on depths and colors that lets
us robustly cope with the noise by enforcing spatio-temporal consistency via per-pixel
reprojection weights derived from the input views. Together, this deferred approach
lets us generate novel views for dynamic scenes without requiring challenging spatio-
temporally consistent reconstructions nor training complex models on large datasets. We
demonstrate our algorithm on real-world dynamic scenes against classic and more recent

learning-based baseline approaches.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Novel-view synthesis (NVS) creates a new view of a scene by
combining existing images captured from different viewpoints.
Much progress in NVS has been made over the past two decades
to tackle its two core problems: 1) how to build a proxy scene
geometry to aid in rendering, such as constructing simplified
sparse depth points or a piecewise planar mesh via structure from
motion (SfM), and 2) how to interpolate or extrapolate an image
via the reprojected proxy given the existing captured imagery.
NVS increases in difficulty across many axes [1, 2]: as the cam-
eras become farther apart (wide baseline [3]), as their number
decreases (few cameras [4]), as they become handheld (casual
capture [5]), as the scene itself contains motion (dynamic scene

*Corresponding author: Nicolas Bonneel
e-mail: nicolas.bonneel@liris.cnrs. fr (Nicolas Bonneel)

[6]), as the scene phenomena become more visually complex
(geometry, materials, and motion [7]), and as the time given to
generate the result decreases (compute cost [8]).

We consider dynamic scenes captured by a small number of
cameras (5-12) over baselines of around 60° (=~1m for close
scenes up to ~3m for far scenes), as might occur with a crowd
of people capturing an event (Figure 1). We assume that these
videos are synchronized. Within this scenario, we include se-
quences with casual handheld cameras. This is a relatively rare
and challenging setting because both the cameras and the scene
objects move simultaneously, and because sequences with only a
small number of casual cameras makes robustness hard to obtain.
This complicates camera pose estimation and depth estimation
in SfM [9] and, if the proxy geometry is not perfect, causes
ghosting, bleeding, and flickering artifacts across views and time
during NVS in both moving objects and the background [10].
Thus, one key component of any algorithm is a way to enforce


http://www.sciencedirect.com
http://www.elsevier.com/locate/cag

2 Preprint/ Computers & Graphics (2022)

Input camera videos

Efficient pose estimation
robust to dynamic objects

—>

3D point reconstruction
without temporal consistency

—

Structure from motion

Sparse noisy point clouds

Novel depth and RGB

Virtual camera path

—

Variational optimization
° with temporal consistency

[ N o;.o %

°
Y °

Camera poses

Fig. 1: Overview. Given a small set of video sequences of a performance, our method computes camera poses and sparse points, then optimizes those points into a
novel video sequence following a user-defined camera path. Our space-time SfM intentionally does not compute temporal consistency for points on dynamic objects
and instead defers spatio-temporal consistency in both depth and RGB reconstructions to the novel view synthesis stage via our variational formulation.

spatio-temporal consistency in both the SfM and the NVS.

We propose to address these challenges by deferring the dif-
ficult problem of reconstructing dynamic objects in time via
SfM, and instead using a NVS approach to enforce temporal
consistency. To ease the task of reconstructing dynamic scenes
via SfM, many approaches first segment out moving objects
or feature points and process the static background and the dy-
namic foreground separately [9, 11, 12]. Instead, we first recover
camera poses for all views without any explicit dynamic object
segmentation. Then, we recover scene points on both static and
dynamic objects without temporal consistency and perform per-
frame SfM across views only. This is easier to solve, but leads
to significantly noisy reconstructions temporally.

Next, we turn our sparse (and noisy) reconstructed point
clouds into novel views. This is commonly completed by densi-
fying points into a depth map [13] for each view in a consistent
way, and using the depths to reproject and merge input RGB
views into a virtual view. We present a formulation which only
densifies a depth map in the virtual camera’s view, rather than
for all input views, which leads to a more efficient solve. For
this, we take a coarse-to-fine variational approach and solve a
diffusion-based formulation. Importantly, this formulation lets
us enforce robust temporal consistency in the output depth to
overcome the initial noisy reconstructions from the SfM. To
determine our final RGB values, we also solve for the output
color within the coarse-to-fine variational formulation.

We perform comparisons to recently-proposed approaches in
point densification and view interpolation, using both optimiza-
tion and learning-based approaches. Further, we show results
on a synthetic dataset in an ablation study. In a nutshell, we
show that considering SfTM and NVS together allows us to ease
the difficult temporally-consistent reconstruction problem and
instead cope with it at the rendering stage. Overall, our work
takes another step forward in improving digital content creation
for scenes captured by multiple video cameras.

2. Related work

Rendering a novel viewpoint of a real-world scene captured
with photographs is a problem that has received much attention
over the past 30 years [1].

Static scene IBR. Image-based rendering (IBR) has initially
attempted to render static scenes either from set of images or
videos. This can be achieved either via warping input views us-
ing optical flow [14], using coarse geometric proxies [15] or via
deep learning approaches [16]. In complex environments, IBR
techniques often need some 3D proxy reconstruction. For exam-
ple, the Lumigraph [15, 17] uses planar or coarse geometric prox-
ies; Shade et al. [18] used multiple planar sprites; and Debevec et
al. [19] employed photogrammetric reconstructions of buildings.
Others have used 3D meshes from multi-view stereo reconstruc-
tions [20, 21]. For instance, Chaurasia et al. [22] proposed
a depth-based synthesis using planar superpixel patches [23].
Matzen et al. [24] used two spherical cameras to synthesize
an omni-directional stereo panorama. Recently, Riegler and
Koltun [25] synthesized new views via neural textures atop a
Delaunay reconstruction of sparse points obtained from video
of static scenes. Beyond surface geometry, NeRF [26] performs
an expensive optimization to create a volumetric function that is
then rendered to synthesize new views.

Solving problems in the gradient domain can help too; for
instance, to achieve smoother interpolations [7] or to densify
sparse scene points. Holynski and Kopf spatio-temporally prop-
agate sparse depth samples in a single view by solving a Poisson
problem [13]. Their method relies on camera motion to detect
depth edges, which limits it to static scenes. Inspired by gradient
domain approaches, we formulate a variational approach that
jointly enforces depth smoothness and consistency, color smooth-
ness and consistency, as well as temporal consistency. Our ap-
proach additionally works with multiple potentially-dynamic
cameras, and introduces a view-consistency term to ensure geo-
metric consistency between views.

Deep learning can also be employed for static scene IBR. This
includes plane sweep volumes [27] and multi-plane images to
interpolate between two static narrow-baseline views [28] or
between multiple views at once [29, 16], appearance flows to
generate novel views from a single image of isolated objects [30],
and light-field view interpolation [31]. Hedman et al. [5] use
a geometric proxy and learn blending weights between view
reprojections using a CNN. To improve the quality around depth
discontinuities, Choi et al. [4] use a 3D uncertainty volume as a
proxy and neural network-based patch refinement. Srinivasa et
al. [32] train a CNN to predict a light field from a single image



Preprint/ Computers & Graphics (2022) 3

for small-baseline view synthesis. Similarly, Song et al. [33]
synthesize new views from a single image of a static scene.
While these techniques were not designed for videos and so
neither explicitly maintain temporal consistency nor are con-
strained by speed, we nevertheless compare our approach to
relevant methods for static scenes taken frame by frame.

Dynamic scene VBR. For dynamic scenes, please see dos Anjos
et al. [2] for an exhaustive survey on video-based rendering
(VBR) techniques. The need for a controlled capture setting
is shared by many methods. Zitnick et al [8] use a specific
system of 8 cameras combined with segmentation based stereo
to extract the geometry. Similarly Wilburn et al. [34] use an array
of 100 tightly-packed cameras. Broxton et al. [35] describe a
custom camera array of 46 synchronized cameras mounted on a
dome used to capture 6 degrees of freedom (DoF) wide-baseline
light field videos. Guo et al. [36] relight videos with a set up
of 331 light sources and 90 cameras, while Collet et al. [37]
require 106 cameras. In a less constrained way, Pozo et al. [38]
create a 16-camera rig to reconstruct 360 panoramic videos
and synthesize new views. Penner and Zhang [39] use a soft
volumetric representation for narrow baseline IBR to enforce
smooth reconstructions. This method can handle motion, but has
trouble handling unstructured data and works best from camera
arrays. Our method also works with handheld cameras.

Casually-captured videos have also been considered. Ballan
et al. [3] allow for quick transitions between handheld video
sequences. Their method segments a single dynamic foreground
subject approximated by a planar proxy, and creates a 3D recon-
structed static background. To cope with dynamic background
objects reprojecting incorrectly, the method blurs background
transitions between captured viewpoints. Our method assumes
no segmentation nor planarity assumptions for dynamic objects.
Lipski et al. [10] use dense correspondence fields to interpolate
views between videos. They disambiguate matches in diffi-
cult cases by manually drawing correspondence lines on image
pairs to use as priors in their matching algorithm. Mustafa et
al. [11, 12] reconstruct isolated moving objects after segmenting
them out from the initial video. These methods focus on specific
object meshes, and so do not provide re-rendering of an entire
scene from a novel viewpoint.

Recently, Luo et al. [40] introduced a consistency term by fine
tuning a neural network to improve the estimated depth per point.
This works for a single camera with no or limited dynamic mo-
tion. Bansal et al. [6] use foreground and background extraction
together with a self-supervised CNN based composition oper-
ator, and Yoon et al. [41] use deep learning to extrapolate new
views from a single monocular video camera; we compare our
approach to this method. While deep learning techniques have
shown progress in this area, and neural methods show significant
gains, they still often need hours of computation for a single
static scenes (e.g., NeRF [26]) or use voxel-based acceleration
structures that are not obvious to extend to video due to memory
constraints (e.g., DirectVoxGo [42] or InstantNGP [43]).

Outside of NVS, other video reconstruction tasks raise con-
sistency questions. Vo et al. [9] used a spatio-temporal bundle
adjustment technique and human motion priors to reconstruct
actor performances by temporally aligning videos at sub-frame

precision. Bao et al. [44] used deep learning for consistent video
super resolution. Finally, Davis et al. [45] recovered depth in
dynamic scenes by unifying structured light and laser scanning
into a space-time stereo framework.

Given how challenging consistency can be for dynamic scenes
with just RGB cameras, our approach considers how to defer
temporal consistency from the reconstruction step to the novel
view synthesis step.

3. Method

Our algorithm takes as input a set of casually-captured syn-
chronized videos. We also provide the focal lengths for a pair
of cameras (required by OpenMVG [46]), while the remaining
focal lengths are estimated automatically by our algorithm. Our
method proceeds in two steps (Figure 1):

1. Camera pose estimation and 3D scene points. We per-
form a three-step structure from motion reconstruction to
provide both the set of camera poses and a set of sparse 3D
points for each time step (Section 3.1).

2. Novel depth and novel view rendering. We densify the
sparse points into a depth map and render a new virtual
camera frame by optimizing a coarse-to-fine variational
formulation while enforcing spatio-temporal consistency
(Section 3.2).

3.1. Camera pose estimation and 3D scene points.

Let us consider a set of .S synchronized video views of a
dynamic scene, each composed of T' frames. We call I =
{Is|ls =1,...,8;t =1,...,T} the set of all frames indexed by
s (camera index) and ¢ (time step). At each frame, via SfM, we
recover the camera parameters Cs ; consisting of the intrinsic
matrix and extrinsic rotation and translation matrices, and a set
of sparse 3D points for each time step. First, we efficiently
recover a set of camera poses for all frames. In contrast to
other methods [3, 11, 12], we estimate poses without an explicit
dynamic object segmentation step. Second, we recover 3D
points by solving a per-timestep SfM problem without a complex
temporal reconstruction. We solve each SfM problem with an a
contrario algorithm [47]. This automatically adapts thresholds
to the input data instead of using global thresholds, which is
more flexible to different inputs.

Efficient camera pose estimation. A straightforward approach
for accurate SfM is to solve a problem across all frames simulta-
neously, but this can be expensive and memory prohibitive. A
second approach might consider solving only between consec-
utive time steps, but this is known to produce camera position
drift [48]. Instead, we take a coarse-to-fine approach.

We begin by computing SfM across keyframes at every « time
steps of each video. We detect and match SIFT keypoints [49]
within this subset and then simultaneously solve for all camera
poses and 3D points. Then, we refine our estimate with a second
SfM that only matches keypoints between successive frames of
the same camera view, with previously-estimated camera poses
held fixed. This considers every frame of every video, but we



4 Preprint/ Computers & Graphics (2022)

only match I, ; to I 441, and not to Isyq1; or Io4q441. To
recover smooth camera paths per view, we add two additional
penalty terms to the bundle adjustment:

w(t =) |Csy — Csp]?, t—3<t'<t+3 (1)
and

w(t —t') ||Ag — Aspr |, t—=3<t <t+3, ()

where w(t — t) is a Gaussian weight function with a standard
deviation of 1.16, (s ; is the center of each camera pose, and
As ¢ is the angle-axis representation of the rotation matrix R ¢,
where the angle is expressed in radians. This second SfM reduces
computation time over all-pairs matching while still reducing
drift by constraining the frame-to-frame pose estimates by the
keyframe pose estimates. For hyperparameters, smaller x will
increase processing time, while larger x may make it more
difficult to match fast camera motion. We found x = 20 to be a
good compromise in our test sequences.

3D scene points. To recover 3D points across the scene, we
solve a keypoint reconstruction problem that is independent
per time step. Taking as fixed the recovered camera poses for
each video frame, we match 2D keypoints only between frames
with the same timestamp, then reconstruct a set of sparse 3D
points per time step. This is our key to handling dynamic scenes:
Motion often makes it difficult to match dynamic objects over
time, but as 2D keypoints are not matched in time in this last
SfM step, moving objects are correctly recovered at least in
space. This knowingly produces temporal inconsistencies; we
will recover from these errors in the novel view synthesis stage
where it is easier to enforce consistency (Sec. 3.2).

Post processing. Finally, we increase the density of our point
matches using PatchMatch [50], as proposed in the OpenMVS!
and COLMAP? [51] frameworks. This process splats points to
each view and assigns colors to the 3D point cloud.

3.2. Novel depth and novel view rendering

Our SfM recovers a set of camera poses and an RGB 3D point
cloud per time step. However, at this stage of our algorithm,
projecting these points to a novel view still leaves large regions
of empty space. To synthesize more realistic views, we diffuse
these points in depth and RGB in the new view in image space
while enforcing spatio-temporal constraints.

Notation. We will often warp the content of a frame I ; into the
domain of the novel view I;: this reprojection is computed using
the extrinsic and intrinsic parameters of both reprojected frames
and virtual camera, as well as the depth map D;. We denote
the projected frame as 1%, (z) = I,4(C,,C; ' (2, Dy())),
where C~1(x, Dy(x)) is the image plane to world coordinate
system transformation of the pixel location x given its depth
value d. We also denote a sparse map by *. The sparse depth
map obtained by projecting the sparse point cloud into frame ¢
of the new virtual camera path is then D, and its corresponding
sparse color image is I,.

"https://github.com/cdcseacave/openMvs
2https://colmap.github.io/

Fig. 2: 3D point weights preserve color edges and occlusions. Top row: Sparse
reconstructed 3D points (left) and their weights w p (right) projected into the
virtual view. White indicates areas of empty space; depth map is bright green
in far depth regions. Bottom row: Points diffused into a full depth map D (left)
according to the weight map wp (right). Note how the color edges are correctly
identified via Eq. 5, and how the occluded points from behind the head of the
character on the left are given no weight by Eq. 6 (top right) and so do not
corrupt the depth.

Algorithm progression. We wish to warp a frame I, ; to the
novel view I; to be blended into a final novel view. For this, we
need both the estimated camera poses and the dense depth maps
Dy, which are yet to be computed. But, to properly constrain the
diffusion of the sparse depth values ﬁt, recovered in Sec. 3.1,
we need RGB information from the virtual camera’s point of
view. Thus, we jointly solve for the depth maps D, and color
images I; by minimizing the energy functional:

E(Dy, It) = Ep(Dy) + Er(I). 3)

The functional relates terms constraining the depth map (Ep) to
terms constraining the color image (E) by weights that guide
the diffusion process. We solve E iteratively: we first solve
for the depth map D, while fixing the color values /;, and then
conversely we fix the depth values and solve for color. This
avoids having to solve a nonlinear system of equations, and lets
us use slightly-improved depth values to warp the input frames
at each step. This improves the estimate of the rendered RGB
image, which in turn constrains the diffusion of the depth.

Depth diffusion. We project the sparse point cloud into the
novel view image plane approximated to integer pixel locations,
creating the sparse depth map D, as an initialization. When
several sparse points project onto the same pixel, we keep only
the depth value corresponding to the sparse point that is closest
to the camera, disregarding possible outliers. Then, we densify
the sparse depth map by minimizing the following energy:

Ep(Dy) :/ wp(x, )|V Dy(z)|*dx

zeQ (4)

+Apc/ Qwﬁ(m,tﬂDt(m)—ﬁt($)|2dx.
xre

The first integral is a smoothness term controlled by weight
wp. We wish diffusion to decrease around color edges to pro-
duce sharp results. We also wish diffusion of depth values to


https://github.com/cdcseacave/openMVS
https://colmap.github.io/

Preprint/ Computers & Graphics (2022) 5

R

Fig. 3: Input image contributions. Four closest input images Is,+ projected onto the virtual camera’s view point alongside their corresponding weight maps wp

(Eq. 8). We see that occluded regions are given little weight.

Fig. 4: Effect of temporal weight. Top row: Color image ;1 and depth map
D¢_1 of a previous time step warped to the camera view at time step t. Bottom
left: Current color image I;. Bottom right: Weight map w7 (Eq. 11) modulates
consistency, notably around the moving mouth of the character on the left.

increase when the colors from reprojected input views are simi-
lar, as they are likely correct. As such, we define wp as:

n

1 S
wp(e ) = [P Y oy 2= WP O

where 1/ vr,||> modulates depth diffusion around color edges,
and 1/, o2, (=,t) is a normalization factor that accounts for
each pixel’s visibility in the novel view. As both the visibility
term 0, and the projection weight w$ pertain more to the color
diffusion process, we will define them later on in Eq. 8.

The second integral in Eq. 4 reduces the weight of sparse 3D
points that are occluded from the point of view of the virtual
camera or are erroneously reconstructed. For this, we relax the
constraint of D; where it exactly matches the projected sparse
point cloud:

s=1

Ii(x)—1 2
wp (1) = exp | LD LD t(x)%;mn : ©)

In Figure 2, we show example weight maps wp, and wp that
govern the depth diffusion process, as defined in Egs. 5 and 6.

There are two parameters in this diffusion process: 1) o con-
trols the soft occlusion tolerance, and we set o = 0.075 in all
our experiments; 2) the sparse point cloud attachment weight

Apc controls the influence of the reconstructed points, and we
set it in the range Apc € [0.25, 2].

Color diffusion. Given depth map D;, we initialize the RGB
image to a projection of the color in the input point cloud. Then,
we densify it by minimizing the following diffusion energy on
each color channel independently:

Ei(1) = / L INn@)e

+3 [ dwpe e - P @l g
s=1v7T

n

23 [ deupe ) Vi) - VI @)
1S

s=1

The first integral encourages smooth gradients over the in-
tensity of the novel view, which aids blending of the projected
input images especially along their borders. The second integral
constrains the RGB intensities and I; to be close to the intensi-
ties of I%",*/, and the third integral constrains the RGB gradients
similarly. They are both modulated by the weight

11279 (x) — Iy () |2
202 ’

x,t) exp )]

wp(@,t) = gs(

that measures the agreement of each warped input frame with
the novel view and is held constant at each iteration. Figure 3
shows warped input frames along with their weight maps w¥.
wp incorporates visibil-
ity term o3, (x,t) (Fig. 5)
that is 1 for a given pixel
x of the novel view I; only
if, out of every pixel that is
projected to the same pixel
location in an input im-
age I ;, x has the smallest
depth value d in the input
image’s coordinate frame.
Color diffusion relies on
two new parameters: Ap

=0

Fig. 5: Visibility term o, - determines

whether a projected input pixel is seen
in the novel view.



6 Preprint/ Computers & Graphics (2022)

controls the influence of the data constraint and \g controls
the influence of the gradient equality constraints. We set them
both in the range [5, 20]. o serves the same function and values
as in the depth map diffusion.

3.3. Temporal consistency

We enforce temporal consistency within novel views by addi-
tional terms in Fp and E;. With slight abuse of notation, this
term is added to Egs. 4 and 7:

wr(@,t) [|Dy(x) = DY ()| *da,
€))

ED(Dt):"'+)\T/

e

wr(,t) | Lo(x) — 777 (2)da.

10)

EI(It):"'+/\T/

zEQ

These terms constrain depth D; to remain similar to the
warped previous depth D;_; projected to the current camera
location, and for color I; similarly. This constraint is relaxed by
a weight

n proj __gyproj 2
wrlet) = 23 exp (JIH (2) - 12} (sc)||> "

202
s=1

for pixels for which an agreement in color was not reached.
This is expected in regions containing motion because the depth
values of frame ¢t — 1 may be invalid, as is the case around the
mouth of the character on the left in Figure 4. wr allows the
computation of depth and color values of these pixels to rely
more freely on the other terms of the functional, like the data
term of the depth or the color of the warped input images.

The parameter controlling the strength of the temporal consis-
tency Ar is set in the range of [0.01,0.1].

3.4. Implementation details

To avoid using input frames that are far away from the novel
camera’s view, we rank each input camera based on its distance
from the novel camera according to the following formula:

1 arccos ((tr(R:RT,) — 1)/2)
oo e |

re(s 2mo?

12)
This penalizes frames with camera poses that are either far in
position or in viewing direction from the novel view. Then,
we use the first n = 4 ranked input frames to minimize the
functional of Eq. 3.

We approximate every partial derivative as central differences
and use Dirichlet boundary conditions.

For efficiency, we also proceed in a multiscale fashion: we
solve for depth and color at a coarse resolution /, and then use
these to initialize a finer resolution [ — 1 at twice the previous
resolution—our lowest level is 1/64 of the original frame size.
At each level we iterate 10 - 2! times. Finally, we also proceed
in a streaming manner: we reproject the previous frame’s depth
and color (denoted as DY" and I}"7) into the current virtual
camera pose for use within the temporal consistency constraint.

4. Experiments and results

4.1. Dataset sequences
Real-world existing dataset. We exploit existing datasets used
in the context of novel view synthesis, all of them captured using
camera arrays:
* Jumping [41]: A group of four people jump (12 cameras).
* Skating [41]: A person rides a skateboard (12 cameras).

* Playground [41]: A person flies a dinosaur balloon (12
cameras).

Umbrella [41]: A person opens and rotates an umbrella (12
cameras).

DynamicFace [41]: A person of making faces (12 cameras).

* Breakdancers [8]: A person break dancing in front of 4
people (8 cameras).

Custom dataset. We test our algorithm on three 100-frame real
world sequences that we acquired each with five Canon Rebel
EOS T7i cameras at 1920x 1080 resolution. The cameras were
set up with a mix of hand held or tripod capture. The videos
were synchronized based on the audio track. Our sequences are:

* Cat and Dog: Two pet animatronics.
* Elephant Wiggle: A puppet hanging by a wire.

* Drone: A drone hanging by a wire.

We additionally generate a synthetic 100 frames long Minions
sequence using 11 input cameras to compare to ground truth
RGB and depth estimation from a 12th camera. It contains a
rendering of two characters laughing behind a table. In this
sequence, all cameras are moving.

4.2. Metrics

To evaluate reconstruction results, we compare camera pose
position and orientation error in world space, and 3D point repro-
jection error in pixels. To evaluate novel view synthesis results,
we quantitatively compare methods in terms of PSNR (higher
is better), more perceptually-motivated SSIM [52] (higher is
better), and video temporal consistency measures SRRED and
TRRED [53] (lower is better).

4.3. Results and ablation study

To show results in this paper, we extract frames from output
videos to highlight the comparisons; please see our accompa-
nying video to better evaluate the results and comparisons. To
begin with our method, Figure 6 shows rendered frames from
novel views and corresponding depth maps for the Car and Dog
and the Elephant Wiggle sequences. While some artifacts re-
main in the depth video, the generation of the final novel view
RGB rendered sequence is robust to these and has fewer artifacts.
Note that the borders of the view partially appear blurry when
there is insufficient field of view overlap between input videos.

We ablate our SfM method using the synthetic Minions dataset
with moving objects, where points are known to be either static
or dynamic (Table 1). We compared the recovered pose over 50



Preprint/ Computers & Graphics (2022) 7

Fig. 6: Results. Color and depth outputs for Cat and Dog and Elephant Wiggle scenes.

Method Pos. error  Orient. error  Median reproj.  Mean reproj.

(mm) ©) error (pix) error (pix)
Naive StM 0.0016 0.1088 0.0553 0.0972
Naive SfM from static objects only 0.0017 0.1482 0.0512 0.0901
Our SfM without path smoothing 0.0016 0.0675 0.0513 0.0940
Our SfTM 0.0015 0.0740 0.0511 0.0937
SfM with Ground Truth Poses 0 0 0.0552 0.0975

Table 1: Ablation study—quantitative camera pose and 3D point reconstruction. On the synthetic Minions scene, we compare estimated camera pose accuracy for
naive SfM, naive SfM using a ground truth mask for the static parts of the scene, and an ablated version of our space time SfM without camera smoothing. While
adding smoothing slightly increases the orientation error, it reduces positional errors. Our approach also minimizes the median reprojection error of the feature points.
SfM minimizes reprojection error by construction: using ground truth poses results in zero position and orientation error, but can still lead to inaccurate point locations
and so increased reprojection error.



8 Preprint/ Computers & Graphics (2022)

No Temp. Cons. No PC Weights

wp (Eq. 6)

wp (Eq. 8)
No P@oj. &/eights All Terms

No Depth Weights No Image Grads.

w2 (Eq.

Ground Truth

Fig. 7: Ablation study—qualitative novel views. Our rendered result without temporal consistency (1st column), without weights on the projected sparse 3D points
(2nd column), without depth weights and inverse image gradients (3rd column), only without inverse image gradients (4th column), without weights on the projected
input images (5th column), together with the full result (6th column) and the ground truth (7th column), for both the depth (first row) and the color view (2nd row).

Metric PSNRT SSIMt SRRED) TRRED]
No Temp. Cons. 26.878 0.846 11.82 26.60
No PC Weights 26.875 0.848 11.65 19.62
No Depth Weights ~ 25.256 0.833 15.62 32.60
No Image Grads. 26.207 0.847 12.88 21.34
No Proj. Weights 27.302 0.846 11.30 19.20
All Terms 27.427 0.853 10.35 17.77

Table 2: Ablation study—quantitative novel views. Evaluated by PSNR,
perceptual quality measure SSIM [52], and video consistency measures
SRRED/TRRED [53]. For PSNR and SSIM, higher values are better; for
SRRED/TRRED, lower values are better. All terms help improve quality.

timestamps and 5 cameras. First, we compare against a naive
StM approach that solves for all frames simultaneously without
consideration of dynamic objects. Next, some methods rely on
segmenting out moving objects to cope with dynamic scenes [11,
12]. To compare to this idea, we created a segmentation-based
SfM baseline from the naive SfM by performing reconstruction
only from points that are known to be static using perfect ground
truth masks. While the segmentation slightly improves the 3D
reconstruction, its positive effect is not clear on the recovery of
camera positions, even though the dynamic object segmentation
is a pixel accurate ground truth. Against both baselines, our
method makes better use of dynamic points to more accurately
recover camera paths and its median reprojection error is the
smallest even compared to the reconstruction of static points
only. Finally, we compare against the non-smoothed camera path
version of our approach. While the positional error decreases, the

rotation error slightly increases. Our camera path regularization
also reduced reprojection errors. Overall, we found smoothing
to provide better final results.

We also test our rendering method in an ablation study by dis-
abling the temporal consistency term and the weight functions
in the diffusion process one at a time. The results are shown in
Figure 7 and Table 2. For all metrics, our full model achieves
the best performance. The effect of the temporal consistency
term on our rendering process can be best seen in our accom-
panying video, where the rendering without it results in jitters
mostly along object boundaries. If we forego the weights w p
(Eq. 6) on the projected sparse 3D points, the background points
that should be occluded by foreground objects gain out-sized
influence over the depth diffusion process and ultimately over
the color rendering. The depth weights wp (Eq. 5) boost the
propagation of high-confidence depth values and reduce the in-
fluence of incorrect ones and so prevent oversmoothing of the
depth maps. The inverse image gradients applied to modulate
the depth diffusion give additional sharpness to the depth images
along object boundaries. Finally, the weights w} (Eq. 8) on
the projected input images prevent ghosting artifacts caused by
occlusions and erroneous reprojections.

4.4. Baseline method comparisons

We compare our method to four recent methods, includ-
ing deep-learning-based methods that require external training
databases: Deep Blending [5], Local Light Field Fusion [29],
Extreme View Synthesis [4], and MonoCam [41]. Furthermore,
we use the Breakdancers scene to compare to results provided by



Preprint/ Computers & Graphics (2022) 9

Method Scenes Min. Training Preprocess Render Fig. #
views time  per frame time
Deep Blending [5]  Static 4 37h 8h Real time 8
LLFF [29] Static 6 ? 10 min Real time 11
EVS [4] Static 2 ? 10 min 98 sec 10
MonoCam [41] Dynamic 1 ? ? ? 12
VI [8] Dynamic 8 N/A ? Real time 13
VVC [10] Dynamic 5 N/A  Manual fix Real time 13
Ours Dynamic 4 N/A 2 min 6.8sec 7-11

Table 3: Related work comparisons. Considering scene type, minimum number of input views, and speed. LLFF and EVS use pre-trained networks, so we did not
re-train them. For MonoCam, we used the author’s results for comparison. ‘?” denotes where no information is available.

Method PSNR? SSIM+ SRRED/ TRRED/
Ours 26.22(25.59) 0.80(0.79)  7.12(7.82) 11.13(10.50)
Deep Blending [S] 9.8 (21.59) 0.34(0.63) 12.51 (11.87) 57.39 (50.82)
LLFF [29] 21.88 (21.09) 0.57 (0.56) 22.28 (21.67) 35.61 (31.48)

Table 4: Results—quantitative metrics. The metrics were computed on the first 34 frames of the synthetic Minions scene. In parenthesis, we also compute metrics
on the first 12 frames only, after which Deep Blending [5] starts to occasionally produce entirely black frames.

Ours

Deep Blending [5]

Fig. 8: Results—qualitative. Comparison with Deep Blending [5] on the Cat
and Dog and Elephant Wiggle sequences.

two older methods that best match our intended setup: the View
Interpolation (VI) method of Zitnick et al. [8] and the Virtual
Video Camera (VVC) method of Lipski et al. [10]. Each of these
methods work with different numbers of input views and require
different amounts of processing time. Some of these methods
are only intended for static scenes, and so we would expect them
to produce temporally inconsistent results. Table 3 summarizes
these properties.

Static—Deep Blending [S]. We compare our rendering
method with Deep Blending [5]. This learns optimized weights
to blend four layers of mosaic images, where the first layer is
composed of the best fitting pixels, the second layer holds the
second best, and so on, with ‘best’ determined by a heuristic.
For the comparison, we first reconstructed each scene separately
for each time step as described in their method. Afterwards,
to use the same camera path as for our results, we registered
each time step to our full space-time reconstruction based on

25 : 11
1
1 10
,g 20 : Results unavailable 9 g
1
g . 8 @
o) ' 7 =
215 1 g
9] ! 6 -
= ' - 8
° ! 5 %
10 1 2
2 - ‘g
& A \ M Average rotation 3 O
a g ' M SRRED (Ours) 2
1 SRRED(Ours,noter‘np.consist.)2 <
1 M SRRED (LLFF) 1
0 ' SRRED (DB)
0 10 20 30 40 50 60 70 80 90 100
Timestep

Fig. 9: Results—quantitative temporal consistency. We show the evolution of
SRRED values (lower is better) over time on the Minions scene for our method
(green), our method without temporal consistency (cyan), and for Deep Blending
(DB) [5] and LLFF [29]. At the same time, we display the average rotation angle
between the target view and the four nearest views used for reconstruction (see
Sec. 3.4). While our method outperforms DB and LLFF, for this sequence, the
novel view rotation with respect to the four nearest views increases over time,
which correlates with increasing errors. As expected, our temporal consistency
reduces this drift. DB produces several frames with large black areas that result
in NaN SSRED values, and thus, gaps in plots.

the camera positions. Finally, we used the pre-trained network
provided by the authors to render each frame.

Figure 8 shows that Deep Blending cannot always reconstruct
marginal parts of the scene, and is often blurrier than our result.
Table 4 quantitatively shows that our method outperforms it in
every metric. Figure 9 shows that SRRED values correlate with
the angular distance between the target view and the four nearest
input views used for reconstruction, and that this distance tends
to increase over time for our particular test sequence.

Static—Extreme View Synthesis [4]. Figure 10 shows a
comparisons with Extreme View Synthesis (EVS) [4]. As input,
EVS receives our SfM results. As expected, it exhibits flickering



10 Preprint/ Computers & Graphics (2022)

Ours EVS [4] Ours

EVS [4] Ours EVS [4]

Fig. 10: Results—qualitative comparison with Extreme View Synthesis (EVS) [4]. On the Cat and Dog, Jumping, and Elephant Wiggle sequences. Our method

produces fewer artifacts than EVS.

LLFF [29]

Ours

Fig. 11: Results—qualitative comparison with Local Light Field Fusion
(LLFF) [29]. On the Jumping, Playground, Umbrella, and Skating sequences.

since this method is designed for static scenes and does not
enforce temporal consistency. In addition, EVS cannot handle
high resolution input because of its memory requirements, so we
lowered the resolution of the input video from 1920x 1080 to
1280%720. Similarly, we could not increase the depth resolution
of its scene reconstruction step, which leads to inaccurate depth
maps and thus severe ghosting in the affected areas.
Static—Local Light Field Fusion [29]. Figure 11 shows a
comparison with Local Light Field Fusion (LLFF) [29]. Since
LLFF requires at least 6 cameras to work, we could only compare
on the 12-camera dataset sequences. To improve stability, we
provide LLFF with our temporally consistent reconstruction
results instead of their COLMAP reconstruction. Since our 3D
reconstruction remains noisy by design, which is not expected
by this method, we fixed the minimum and maximum depths to

known correct values—this lets LLFF correctly set space bounds
for its Multi-Plane Image computations. Without this, extreme
flickering occurs; with, flickering is reduced but is not eliminated
completely. Our result also appears sharper and with reduced
ghosting artifacts, which is also reflected in Table 4.

Dynamic—Monocam [41]. We conduct a comparison
with Monocam [41], using the results given by the authors. It
is important to note that the input sequences provided by the
authors as a dataset differ slightly from the sequences used as
results in the corresponding paper [41], which makes direct
comparison impossible. For instance, in the Skating sequence,
the skater is performing hand gestures in the input sequence, but
not in the result sequence.

In the MonoCam results, Figure 12 shows that dynamic back-
ground objects like the plants in the Umbrella sequence incor-
rectly appear static if the virtual camera is static, and are incon-
sistent if the virtual camera is dynamic. MonoCam results also
exhibit temporal coherence artifacts. For instance, the reflec-
tions in the jumping and skating sequences jump back and forth
based on which view was used to render them. Please see these
artifacts in the accompanying video.

Dynamic—View Interpolation, Virtual Video Camera [8,
10]. Figure 13 shows a comparison with View Interpolation
(VI) [8] and Virtual Video Camera (VVC) [10] methods. We
approximately reproduced the camera path of the video provided
by the authors for the Breakdancers scene for this comparison.
While VI requires a fixed and calibrated camera grid, our method
can use hand-held devices. VVC eliminates these restrictions,
but relies on user input to correct correspondence matches—a
user-interaction that our methods avoids.

4.5. Challenging sequence—Drone

This sequence shows a quadrocopter drone (Figure 14). The
drone has many thin features: the chassis, the fan blades, and
exposed wires between battery and motors. Here, our SfM re-
construction fails to find feature points on or nearby thin features
at the correct depth, therefore our consistent propagation cannot
provide the correct depth. As such, we see ghosting effects.

4.6. Computational resources

We implemented our system in C++ on a Intel(R) Xeon(R)
CPU ES-2630 v3 @2.4GHz computer. We used the OpenMVG
library to compute Structure from Motion and sparse depth maps;



Preprint/ Computers & Graphics (2022) 11

f,:

Monocam [41]

Ours

Ours 7 onocam [41]

Fig. 12: Results—qualitative comparison with MonoCam [41]. On the Jumping, Playground, Umbrella, and Skating sequences. Stronger temporal inconsistencies
in results computed with MonoCam can be seen in the accompanying video. Camera poses and small scene details differ between the input data and MonoCam

results, but were provided as is by the authors.

¢
Ours VI [8] VVC [10]
Fig. 13: Results—qualitative comparison with VI [8] and VVC [10]. On the

Breakdancers sequence, using results provided by the authors.

Fig. 14: Limitations on thin features. In the Drone sequence, the scene has thin
features which makes geometry reconstruction difficult. Here, our consistent
propagation has trouble correcting for missing sparse feature points.

and both OpenMVS and COLMAP to compute the PatchMatch-
based sparse depth map post processing (Section 3.1). We paral-
lelize the code using OpenMP and run on 32 cores; the rendering
algorithm loads up to 2GBs of data per frame. As an example of
wall-clock time, it took 2.2 hours to process the Elephant Wiggle
sequence (5 cameras, 100 Full HD 1080p frames per camera).
The computation time breaks down to camera and sparse depth
estimation (2 hours), and the rendering itself (6.8s per frame at
half of the input resolution, 11.3 minutes for the whole video).

5. Discussion

Our approach solves a joint optimization for color and depth
via alternating descent, where each of color and depth is op-
timized in turn via Eq. 3 through the coarse-to-fine iterations.
Solving for both color and depth simultaneously struggled to
converge under the same scheme, producing poorer results.

Concerning limitations, first, our choice of the OpenMVG
library [46] for computing the SfM has the drawback that we
must provide focal lengths for a pair of cameras to initiate the
reconstruction process. Our method also requires that the video
sequences should have enough texture on the objects and in the
background such that enough SIFT keypoints can be detected
and matched. This also relates to the amount of motion in the
frame: conceptually, if SIFT keypoints are only detected on
moving objects, then camera pose estimation will fail. In prac-
tice, we did not find this to be a problem. Furthermore, if the
baseline is too wide, then not enough points will be obtained on
moving objects and the depth propagation will fail. Similarly,
in the case of objects not properly supported by 3D points, our
propagation technique will produce ghosting artifacts around
depth discontinuities. This effect is most noticeable around (dy-
namic) foreground object boundaries and the background, where
the difference in depth values tends to be larger. Finally, our
optimization has parameters that can be tuned for each sequence;
we provide reasonable initial values (Sec. 3.2).

Finally, our current implementation is unoptimized C++ run-
ning on a CPU. Even if we optimize the implementation, one bot-
tleneck is that keypoints from several images must be matched,
and this is time consuming. If we consider SfM as an offline task



12 Preprint/ Computers & Graphics (2022)

to be performed once per scene, then the view rendering part
currently takes 7 seconds per frame. Given the fixed grid, GPU-
based diffusion optimizers are possible, which would produce a
much more application-friendly render time.

6. Conclusion

We introduce a novel view synthesis method which can han-
dle dynamic scenes. It is based around the key insight that
reconstructing temporally-consistent 3D points on dynamic ob-
jects is hard, yet a structure-from-motion reconstruction method
need not be temporally consistent if temporal consistency can
be enforced in the rendering algorithm. We show that this
can be accomplished by deferring consistency to a variational
screen-space formulation, which makes it easy to robustly en-
force spatio-temporal consistency via reprojection constraints
weighted by confidences. While our setting has some restric-
tions, we show competitive results against existing baselines
for video-based rendering without resorting to powerful but
time-consuming deep learning techniques. In the future, we
hope to reduce constraints in camera motions and time with
asynchronous videos.

Acknowledgments

This work was funded in part by ANR project CALiTrOp
(ANR-16-CE33-0026).

References

[1] Zhang, C, Chen, T. A survey on image-based rendering—representation,
sampling and compression. Signal Processing: Image Communication
2004;19(1):1-28.

[2] dos Anjos, RK, Pereira, J, Gaspar, J. A navigation paradigm driven
classification for video-based rendering techniques. Computers & Graphics
2018;77:205-216.

[3] Ballan, L, Brostow, GJ, Puwein, J, Pollefeys, M. Unstructured video-
based rendering: Interactive exploration of casually captured videos. ACM
Transactions on Graphics (TOG) 2010;29(4):87.

[4] Choi, I, Gallo, O, Troccoli, A, Kim, MH, Kautz, J. Extreme view
synthesis. In: 2019 IEEE/CVF International Conference on Computer
Vision (ICCV). 2019, p. 7780-7789.

[5] Hedman, P, Philip, J, Price, T, Frahm, JM, Drettakis, G, Brostow, G.
Deep blending for free-viewpoint image-based rendering. ACM Trans
Graph 2018;37(6). URL: https://doi.org/10.1145/3272127.
3275084.d0i:10.1145/3272127.3275084.

[6] Bansal, A, Vo, M, Sheikh, Y, Ramanan, D, Narasimhan, S. 4d
visualization of dynamic events from unconstrained multi-view videos. The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
2020;.

[7]1 Kopf, J, Langguth, F, Scharstein, D, Szeliski, R, Goesele, M. Image-
based rendering in the gradient domain. ACM Transactions on Graphics
(TOG) 2013;32(6):199.

[8] Zitnick, CL, Kang, SB, Uyttendaele, M, Winder, S, Szeliski, R. High-
quality video view interpolation using a layered representation. ACM Trans
Graph 2004;23(3):600-608. URL: https://doi.org/10.1145/
1015706.1015766.d0i:10.1145/1015706.1015766.

[9]1 Vo, M, Narasimhan, SG, Sheikh, Y. Spatiotemporal bundle adjustment
for dynamic 3d reconstruction. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2016, p. 1710-1718.

[10] Lipski, C,Linz, C,Berger, K, Sellent, A, Magnor, M. Virtual video cam-
era: Image-based viewpoint navigation through space and time. Computer
Graphics Forum 2010;29(8):2555-2568.

[11] Mustafa, A, Kim, H, Guillemaut, J, Hilton, A. Temporally coherent 4d
reconstruction of complex dynamic scenes. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2016, p. 4660-4669.
doi:10.1109/CVPR.2016.504.

[12] Mustafa, A, Volino, M, Kim, H, Guillemaut, J, Hilton, A.
Temporally coherent general dynamic scene reconstruction. CoRR
2019;abs/1907.08195. URL: http://arxiv.org/abs/1907.
08195.arXiv:1907.08195.

[13] Holynski, A, Kopf, J. Fast depth densification for occlusion-aware
augmented reality. In: SIGGRAPH Asia 2018 Technical Papers. ACM;
2018, p. 194.

[14] Chen, SE, Williams, L. View interpolation for image synthesis. In:
Proceedings of the 20th annual conference on Computer graphics and
interactive techniques. ACM; 1993, p. 279-288.

[15] Gortler, SJ, Grzeszczuk, R, Szeliski, R, Cohen, MF. The lumigraph. In:
Siggraph; vol. 96. 1996, p. 43-54.

[16] Flynn, J, Broxton, M, Debevec, P, DuVall, M, Fyffe, G, Overbeck,
R, et al. Deepview: View synthesis with learned gradient descent. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2019, p. 2367-2376.

[17] Buehler, C, Bosse, M, McMillan, L, Gortler, S, Cohen, M. Unstructured
lumigraph rendering. In: Proceedings of the 28th annual conference on
Computer graphics and interactive techniques. ACM; 2001, p. 425-432.

[18] Shade, J, Gortler, S, He, Lw, Szeliski, R. Layered depth images. In:
Proceedings of the 25th annual conference on Computer graphics and
interactive techniques. 1998, p. 231-242.

[19] Debevec, PE, Taylor, CJ, Malik, J. Modeling and rendering architecture
from photographs: A hybrid geometry-and image-based approach. In:
Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques. 1996, p. 11-20.

[20] Snavely, N, Seitz, SM, Szeliski, R. Photo tourism: exploring photo
collections in 3d. In: ACM transactions on graphics (TOG); vol. 25. ACM;
2006, p. 835-846.

[21] Hedman, P, Ritschel, T, Drettakis, G, Brostow, G. Scalable inside-
out image-based rendering. ACM Transactions on Graphics (TOG)
2016;35(6):231.

[22] Chaurasia, G, Duchene, S, Sorkine-Hornung, O, Drettakis, G. Depth
synthesis and local warps for plausible image-based navigation. ACM
Transactions on Graphics (TOG) 2013;32(3):30.

[23] Achanta, R, Shaji, A, Smith, K, Lucchi, A, Fua, P, Siisstrunk, S. Slic
superpixels. Tech. Rep.; 2010.

[24] Matzen, K, Cohen, MF, Evans, B, Kopf, J, Szeliski, R. Low-cost 360
stereo photography and video capture. ACM Trans Graph 2017;36(4).

[25] Riegler, G, Koltun, V. Free view synthesis. In: European Conference on
Computer Vision. 2020,.

[26] Mildenhall, B, Srinivasan, PP, Tancik, M, Barron, JT, Ramamoorthi,
R, Ng, R. Nerf: Representing scenes as neural radiance fields for view
synthesis. 2020. arXiv:2003.08934.

[27] Flynn, J, Neulander, I, Philbin, J, Snavely, N. Deepstereo: Learning
to predict new views from the world’s imagery. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2016, p.
5515-5524.

[28] Zhou, T, Tucker, R, Flynn, J, Fyffe, G, Snavely, N. Stereo magnifi-
cation: Learning view synthesis using multiplane images. arXiv preprint
arXiv:180509817 2018;.

[29] Mildenhall, B, Srinivasan, PP, Ortiz-Cayon, R, Kalantari, NK, Ra-
mamoorthi, R, Ng, R, etal. Local light field fusion: Practical view synthe-
sis with prescriptive sampling guidelines. ACM Trans Graph 2019;38(4).
URL: https://doi.org/10.1145/3306346.3322980.doi:10.
1145/3306346.3322980.

[30] Zhou, T, Tulsiani, S, Sun, W, Malik, J, Efros, AA. View synthesis by
appearance flow. In: European conference on computer vision. Springer;
2016, p. 286-301.

[31] Kalantari, NK, Wang, TC, Ramamoorthi, R. Learning-based view
synthesis for light field cameras. ACM Transactions on Graphics (TOG)
2016;35(6):193.

[32] Srinivasan, PP, Wang, T, Sreelal, A, Ramamoorthi, R, Ng, R. Learning
to synthesize a 4d RGBD light field from a single image. International
Conference on Computer Vision (ICCV) 2017 2017;.

[33] Song, J, Chen, X, Hilliges, O. Monocular neural image based rendering
with continuous view control. In: ICCV 2019. 2019, p. 4089-4099.

[34] Wilburn, B, Joshi, N, Vaish, V, Talvala, EV, Antunez, E, Barth, A, et al.


https://doi.org/10.1145/3272127.3275084
https://doi.org/10.1145/3272127.3275084
http://dx.doi.org/10.1145/3272127.3275084
https://doi.org/10.1145/1015706.1015766
https://doi.org/10.1145/1015706.1015766
http://dx.doi.org/10.1145/1015706.1015766
http://dx.doi.org/10.1109/CVPR.2016.504
http://arxiv.org/abs/1907.08195
http://arxiv.org/abs/1907.08195
http://arxiv.org/abs/1907.08195
http://arxiv.org/abs/2003.08934
https://doi.org/10.1145/3306346.3322980
http://dx.doi.org/10.1145/3306346.3322980
http://dx.doi.org/10.1145/3306346.3322980

(35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

(52]

[53]

Preprint/ Computers & Graphics (2022)

High performance imaging using large camera arrays. ACM Trans Graph
2005;24(3).

Broxton, M, Flynn, J, Overbeck, R, Erickson, D, Hedman, P, DuVall, M,
et al. Immersive light field video with a layered mesh representation. ACM
Transactions on Graphics (Proc SIGGRAPH) 2020;39(4):86:1-86:15.
Guo, K, Lincoln, P, Davidson, P, Busch, J, Yu, X, Whalen, M, et al.
The relightables: Volumetric performance capture of humans with realistic
relighting. ACM Trans Graph 2019;38(6).

Collet, A, Chuang, M, Sweeney, P, Gillett, D, Evseev, D, Calabrese, D,
et al. High-quality streamable free-viewpoint video. ACM Trans Graph
2015;34(4).

Pozo, AP, Toksvig, M, Schrager, TF, Hsu, J, Mathur, U, Sorkine-
Hornung, A, etal. An integrated 6dof video camera and system design.
ACM Trans Graph 2019;38(6).

Penner, E, Zhang, L. Soft 3d reconstruction for view synthesis. ACM
Transactions on Graphics (TOG) 2017;36(6):235.

Luo, X, Huang, J, Szeliski, R, Matzen, K, Kopf, J. Consistent video
depth estimation. ACM Transactions on Graphics (Proceedings of ACM
SIGGRAPH) 2020;39(4).

Yoon, JS, Kim, K, Gallo, O, Park, HS, Kautz, J. Novel view synthesis
of dynamic scenes with globally coherent depths from a monocular cam-
era. The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) 2020;.

Sun, C, Sun, M, Chen, HT. Direct voxel grid optimization: Super-
fast convergence for radiance fields reconstruction. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2022,URL: https://arxiv.org/abs/2111.11215.doi:10.
48550/ARXIV.2111.11215.

Miiller, T, Evans, A, Schied, C, Keller, A. Instant neural graph-
ics primitives with a multiresolution hash encoding. arXiv preprint
arXiv:220105989 2022;.

Bao, W, Lai, WS, Ma, C, Zhang, X, Gao, Z, Yang, MH. Depth-aware
video frame interpolation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2019, p. 3703-3712.

Davis, J, Ramamoorthi, R, Rusinkiewicz, S. Spacetime stereo: A
unifying framework for depth from triangulation. In: 2003 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2003.
Proceedings.; vol. 2. IEEE; 2003, p. 1I-359.

Moulon, P, Monasse, P, Perrot, R, Marlet, R. Openmvg: Open multiple
view geometry. In: International Workshop on Reproducible Research in
Pattern Recognition. Springer; 2016, p. 60-74.

Moulon, P, Monasse, P, Marlet, R. Adaptive structure from motion with
a contrario model estimation. In: Proceedings of the Asian Computer
Vision Conference (ACCV 2012). Springer Berlin Heidelberg; 2012, p.
257-270. doi:10.1007/978-3-642-37447-0_20.

Cornelis, K, Verbiest, F, Van Gool, L. Drift detection and removal
for sequential structure from motion algorithms. IEEE Transactions
on Pattern Analysis and Machine Intelligence 2004;26(10):1249-1259.
doi:10.1109/TPAMI.2004.85.

Lowe, DG. Distinctive image features from scale-invariant keypoints.
International journal of computer vision 2004;60(2):91-110.

Barnes, C, Shechtman, E, Finkelstein, A, Goldman, DB. Patch-
match: A randomized correspondence algorithm for structural im-
age editing. In: ACM SIGGRAPH 2009 Papers. SIGGRAPH
’09; New York, NY, USA: Association for Computing Machinery.
ISBN 9781605587264; 2009,URL: https://doi.org/10.1145/
1576246.1531330.d0i:10.1145/1576246.1531330.
Schonberger, JL, Frahm, JM. Structure-from-motion revisited. In:
Proceedings of the IEEE conference on computer vision and pattern recog-
nition. 2016, p. 4104-4113.

Wang, Z, Bovik, A, Sheikh, H, Simoncelli, E. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image
Processing 2004;13(4):600-612. doi:10.1109/TIP.2003.819861.
Soundararajan, R, Bovik, AC. Video quality assessment by reduced
reference spatio-temporal entropic differencing. IEEE Transactions on
Circuits and Systems for Video Technology 2013;23(4):684—694. doi:10 .
1109/TCSVT.2012.2214933.

13


https://arxiv.org/abs/2111.11215
http://dx.doi.org/10.48550/ARXIV.2111.11215
http://dx.doi.org/10.48550/ARXIV.2111.11215
http://dx.doi.org/10.1007/978-3-642-37447-0_20
http://dx.doi.org/10.1109/TPAMI.2004.85
https://doi.org/10.1145/1576246.1531330
https://doi.org/10.1145/1576246.1531330
http://dx.doi.org/10.1145/1576246.1531330
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/TCSVT.2012.2214933
http://dx.doi.org/10.1109/TCSVT.2012.2214933

	Introduction
	Related work
	Method
	Camera pose estimation and 3D scene points.
	Novel depth and novel view rendering
	Temporal consistency
	Implementation details

	Experiments and results
	Dataset sequences
	Metrics
	Results and ablation study
	Baseline method comparisons
	Challenging sequence—Drone
	Computational resources

	Discussion
	Conclusion

