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Abstract

Depth estimation tries to obtain 3D scene geometry from low-dimensional data like 2D images. This
is a vital operation in computer vision and any general solution must preserve all depth information of
potential relevance to support higher-level tasks. For scenes with well-defined depth, this work shows
that multi-view edges can encode all relevant information—that multi-view edges are complete. For
this, we follow Elder’s complementary work on the completeness of 2D edges for image reconstruc-
tion. We deploy an image-space geometric representation: an encoding of multi-view scene edges as
constraints and a diffusion reconstruction method for inverting this code into depth maps. Due to
inaccurate constraints, diffusion-based methods have previously underperformed against deep learning
methods; however, we will reassess the value of diffusion-based methods and show their competitive-
ness without requiring training data. To begin, we work with structured light fields and Epipolar
Plane Images (EPIs). EPIs present high-gradient edges in the angular domain: with correct process-
ing, EPIs provide depth constraints with accurate occlusion boundaries and view consistency. Then,
we present a differentiable representation form that allows the constraints and the diffusion recon-
struction to be optimized in an unsupervised way via a multi-view reconstruction loss. This is based
around point splatting via radiative transport, and extends to unstructured multi-view images. We
evaluate our reconstructions for accuracy, occlusion handling, view consistency, and sparsity to show
that they retain the geometric information required for higher-level tasks.
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1 Introduction

Depth estimation is a vital first step in many
computer vision tasks such as novel view synthe-
sis [1–4], scene editing [5–7], lighting and material
estimation [8], and augmented reality [9]. The
problem has a long history with a wide variety
of proposed solutions. These include photomet-
ric stereo [10], shape from shading [11], depth
from defocus [12, 13], active illumination [10, 14–
17], and deep-learning-based methods including
monocular settings [18–21].

The most popular and widely studied approach
is still binocular and multi-view passive stereo
depth estimation [22, 23]. This is due to its ability
to work in many environments and lighting condi-
tions, its immunity to interference from competing
active illumination signals, and its ability to gen-
erate depth at the same resolution as the color
input. In their basic form, stereo depth methods
use epipolar constraints to perform a correspon-
dence search at each pixel in neighboring images.
However, this search is computationally expensive
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and is susceptible to failure in textureless, specu-
lar, and disoccluded regions. The baseline between
neighboring cameras can also have a significant
impact on quality: Small baselines reduce accu-
racy as the change in disparity relative to depth
is low, and large baselines make it difficult to find
corresponding points in neighboring images [24].

Nonetheless, stereo depth estimation remains
popular, especially with the recent proliferation
of camera sensors. Most smartphones now have
at least two back-facing cameras, e.g., the Google
Pixel 7 Pro has three, the Light L16 had sixteen,
and light field cameras may have many more. A
large number of sensors leads to increased—often
prohibitive—data and computational costs. But
it also enables new applications in computational
photography, including ones that require depth,
with the quality of depth often correlating with
the quality achieved in the computational photog-
raphy task. While depth accuracy is less important
for frontal-scene novel view synthesis [25], depth
accuracy is critical for tasks that require mea-
surement such as 3D reconstruction, tasks that
edit scenes such as light field painting [5, 26], or
tasks that rely on correct surface normals like
relighting [10] or material estimation [8].

Beyond accuracy, we must also consider other
properties of a representation for depth. For
instance, a depth map contains discrete samples
on a regular grid, but this may be redundant if
neighboring samples do not vary. For 2D appear-
ance images, Elder described the explicitness,
concision, and completeness of a given repre-
sentation [27], where completeness captures all
information of potential relevance to any higher-
level visual task. From this, Elder presented a
representation of 2D images based on sparse 2D
texture edges and a diffusion reconstruction step.
This provides an explicit, concise, and complete
image-space representation that is accurate in its
reconstruction of an original image.

From this inspiration, our paper shows that
sparse multi-view edges can similarly provide a
complete representation of scene depth; that is,
multi-view edges encode all relevant information
to support higher-level tasks that rely on depth
estimation. These can represent depth for all
input views with correct occlusion, maintaining
the explicitness of depth structures via occlusion
edges. Further, their concision is particularly use-
ful: beyond their sparseness helping to reduce data

costs from many input camera views, multi-view
edges can help us to ignore estimating depth in
low-confidence textureless regions and instead rely
on diffusion to fill in the gaps.

First, we describe how to quantify complete-
ness by the three metrics of accuracy, occlusion-
edge accuracy, and view-consistency, and then
define the proposed sparse multi-view edge repre-
sentation for scene depth (Section 2). Then, we
show how to estimate the parameters of the rep-
resentation for structured 4D light field images
(Section 3). Two-plane parameterized light fields
are a good starting point because multi-view edges
are well-defined via gradients in epipolar plane
images (EPIs). Evaluating the representation for
completeness requires measuring the loss of infor-
mation during encoding. Thus, we show how to
decode the representation into piece-wise smooth
multi-view depth maps using diffusion, where the
representation provides constraints upon the dif-
fusion operation (Section 4). We evaluate the rep-
resentation for completeness, observing that our
encoding/decoding approach finds a good balance
between the three metrics (Section 5).

However, even though our multi-view edge rep-
resentation is in principle complete, in practice
errors in the diffusion constraints may make it
less effective. This is one reason why diffusion-
based methods for depth estimation have declined
in favor versus deep-learning-based methods. To
reconsider this situation, we present a differ-
entiable encoding variant that allows us to
optimize representation parameters directly to
improve quality with respect to the three met-
rics (Section 6). Using Gaussian splatting and
radiative transport, this differentiable approach
optimizes constraints with respect to a multi-view
reprojection loss, and lets us relax our capture
scenario to unstructured multi-view images. Opti-
mizing the representation directly also lets us
easily control sparsity by assessing the value of
each multi-view edge. This produces accurate
and compact representations for scene depth that
can be competitive with deep learning methods
(Section 7), where the representation is especially
advantageous for sparsity and discreteness that
are difficult to represent with CNNs.

Code and video results are available online at
https://visual.cs.brown.edu/incompletedepth.

2

https://visual.cs.brown.edu/incompletedepth


2 De�ning a Representation

2.1 Criteria

We begin by describing properties we would like
in a representation and how to measure them.
To evaluate an image representation, Elder [27]
determined explicitness, concision, and complete-
ness criteria. We contextualize these to the speci�c
setting of multi-view scene reconstruction and
consider them criteria for evaluating a general-
purpose image space geometric representation.

Explicitness

Important structural information should be
explicitly represented. Adelson [28] describes this
as representing \things" not \stu�." For instance,
edges are more explicit than intensity values.
Multi-view color images implicitly store the geo-
metric structure of a scene. Depth maps explicitly
store geometric structure, and this is more eas-
ily usable by later tasks, e.g., through depth
map gradients we can de�ne occlusion bound-
aries. Another example is spatio-angular segmen-
tation masks [6, 29] that de�ne piece-wise constant
object surfaces. Both representations are more
explicit than multi-view RGB images.

Concision

Any redundant information in the input should be
discarded. This property|based on Barlow's e�-
cient coding hypothesis [30]|is especially impor-
tant for multi-view input, as multi-view images
implicitly encode depth in their angular dimension
with high redundancy. Many methods [23, 31{38]
exploit this redundancy for higher-quality depth
reconstruction than traditional stereo. However,
suppose we store the reconstructed result as a
depth map per input view. This retains redun-
dancy and so per-view depth maps are not concise.
Concision also relates to the sparsity of a needed
representation, where textureless regions might
require little representation.

Completeness

The representation should encode all relevant
information to be able to support a variety of
higher-level tasks. Di�erent tasks are enabled
as depth reconstruction quality increases, e.g.,
approximate reconstructions can su�ce for novel

view synthesis tasks [25, 39] but not for nor-
mal or BRDF estimation [40, 41]. Only high
quality reconstruction everywhere makes stringent
higher-level tasks possible.

2.2 Measurement

Elder also lists generality, reliability and preci-
sion as evaluative criteria for a representation. We
believe these concepts are subsumed within three
metrics for a representation's reconstructed depth.

Accuracy

Accuracy refers to thecorrectnessof the estimated
depth maps in metric terms. Correct reconstruc-
tion is a broad goal of 3D reconstruction and so
accuracy is a prime metric in benchmarks [42{
45]. It quanti�es the di�erence between the esti-
mated depth and a known ground truth measure.
Common quantitative metrics include the Mean
Absolute Error (MAE), the Mean Squared Error
(MSE), Q25, and a bad pixel measure BP(�). The
Q25 metric represents the 25th percentile of the
absolute error, and BP(t) is the percentage of
pixels falling above thresholdt in absolute error.

Occlusion Edge Accuracy

For some tasks, like compositing a new scene
element behind an existing one, the mean error
over all pixels may be less relevant than the
error speci�cally for pixels upon depth boundaries.
The accuracy of occlusion edge reconstruction is
measured by restricting MSE, MAE, Q25, and
bad pixel BP(�) to the vicinity of depth edges
de�ned by gradients in ground truth. We also show
precision-recall curves of these edges.

View-Consistency

View consistency in multi-view depth estimation
requires the globally-consistent reconstruction of
each viewI i as represented by a depth mapD i :
R2 ! R in camera space coordinates. View consis-
tency is vital for avoiding ickering and swimming
artifacts in applications that involve interaction
with all input views simultaneously or in quick
succession, such as when editing a light �eld or for
output on a light �eld display [5, 46].

We measure view consistency by reprojecting
a depth map onto a reference view and comput-
ing the variance. Let D0; D1; : : : ; Dn represent the
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