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Abstract 3

Abstract

The abundance of mobile devices and digital cameras with video capture makes it easy to obtain large
collections of video clips that contain the same location, environment, or event. However, such an
unstructured collection is difficult to comprehend and explore. We propose a system that analyses col-
lections of unstructured but related video data to create a Videoscape: a data structure that enables
interactive exploration of video collections by visually navigating — spatially and/or temporally — be-
tween different clips. We automatically identify transition opportunities, or portals. From these portals,
we construct the Videoscape, a graph whose edges are video clips and whose nodes are portals between
clips. Now structured, the videos can be interactively explored by walking the graph or by geographic
map. Given this system, we gauge preference for different video transition styles in a user study, and
generate heuristics that automatically choose an appropriate transition style. We evaluate our system
using three further user studies, which allows us to conclude that Videoscapes provides significant ben-
efits over related methods. Our system leads to previously unseen ways of interactive spatio-temporal

exploration of casually captured videos, and we demonstrate this on several video collections.
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Chapter 1

Introduction

With the ubiquity of video capture devices, it is very easy to form video collections. Online, there are
staggeringly large video collections. However, the interfaces to these video collections are often simply
lists of text-ranked videos which do not exploit the visual content relationships between videos, nor
other implicit relationships such as spatial or geographical relationships. Finding content relationships
between arbitrary videos is difficult, and the field of multimedia retrieval tries to address these problems.
However, we want to provide better interfaces to exploit content relationships for the specific subset of
videos which capture places. This important subset of videos shows the dynamics and liveliness of a
place and events or performances within those places. Videos of places may be found in online video
collections, or could be captured specifically to demonstrate a particular place and the activities that

happen within it.

Imagine a theme park. The owners specifically capture professional video of the park to show off
the lively environment and the rides and attractions. Similarly, visitors to the park also capture their
own videos of their experiences in the theme park. However, currently there is no automatic way to
find similar content between these videos and allow people to explore the interesting connections that
are within the collection. For instance, potential visitors to the parks could explore the collection as an
advertising tool or to plan their trip, or existing visitors could relive their experiences and see their own

videos integrated into a wider collection.

Hypothesis

If we can automatically find visual content relationships between sparse, casually captured videos of
places in a collection, then we can provide qualitative and quantitative improvements to video collection

exploration through novel interfaces.

Our goal is to build a system to explore connections within video collections of places, to show with
examples that there are compelling use cases for novel interfaces which allow connection exploration,
and to experimentally evaluate this system against existing interfaces for video collection exploration to

provide evidence which supports the thesis hypothesis.
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1.1 Approach

In recent years, the research community has started to harvest the immense amount of data from com-
munity photo collections, and has developed tools to estimate the spatial relationships between pho-
tographs, or to reconstruct 3D geometry of certain landmarks if a sufficiently dense set of photos is
available [SSS06, GSCT07, ASST09, FGG'10]. With these tools, we can interactively explore loca-
tions by viewing the reconstructed 3D models or spatially transitioning between photographs. Navigation
tools like Google Street View or Bing Maps also use this exploration paradigm and reconstruct entire
street networks through alignment of purposefully captured imagery via additionally recorded localiza-

tion and depth sensor data.

These photo exploration tools are ideal for viewing and navigating static landmarks but cannot
convey the dynamics, liveliness, and spatio-temporal relationships of a place or the events within that
place. Additionally, there are no comparable browsing experiences for casually captured videos and
how to generate these experiences is still an open challenge. It may be tempting to think that videos
are simply series of images, so straightforward extensions of image-based approaches should serve the
purpose and enable video collection exploration. However, in reality, the nature of casually captured
video is different from photos and prevents such a simple extension. Casually captured video collections
are usually sparse and largely unstructured, unlike the dense photo collections used in the approaches

mentioned above. This precludes a dense reconstruction or registration of all frames.

Furthermore, the exploration interface should reflect the dynamic and temporal nature of video.
This major data difference causes problems for existing image-based approaches. Current interfaces to
video collections expect videos to be isolated and cannot handle the expression of connections within
the collection. Existing spatial or geographical video browsing techniques do not extend to sparse,
casually captured video collections, and typically either handle single videos or require complicated

capture setups.

In this thesis, we propose a system to explore unstructured video collections in an immersive and
visually compelling way. Given a sparse video collection of a certain (possibly large) area, e.g., the inner
city of London, the user can tour through the video collection by following videos and transitioning
between them at corresponding views. While our system cannot provide directions from location A to
B, as sparse video collections may not contain sufficient input, it does provide the spatial arrangement
of landmarks contained within a video collection (distinct from the geolocations of video captures).
Unlike tours through images, our system conveys a sense of place, dynamics and liveliness while still
maintaining seamless browsing with video transitions. The challenge is to build a set of techniques to

analyse such video collections, and to provide a set of interfaces to exploit the derived structure.

To this end, we compute a Videoscape graph structure from a collection of videos. The edges of
the Videoscape are video segments and the nodes mark possible transition points, or portals, between
videos. We automatically identify portals from an appropriate subset of the video frames as there is
often great redundancy in videos, and process the portals (and the corresponding video frames) to enable

smooth transitions between videos. The Videoscape can be explored interactively by playing video clips
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and transitioning to other clips when a portal arises. When temporal context is relevant, our system
provides temporal awareness of an event by offering correctly ordered transitions between temporally
aligned videos. This yields a meaningful spatio-temporal viewing experience of large, unstructured video
collections. With GPS and orientation data, a map-based mode lets the user choose start and end views of
content within the collection, from which the system automatically finds a path of videos and transitions
to join them. Furthermore, images can be given to the system, from which a path through the Videoscape
graph between the closest matching portals is formed. To enhance the experience when transitioning
through a portal, we develop different video transition modes, with appropriate transitions selected based
on the preference of participants in a user study. Finally, we evaluate the Videoscape system with three
further comparative user studies which address spatial awareness, video tour summarization, and video

browsing.

1.2 Contributions

The contributions of this thesis are:

e Videoscape graph: A graph capturing the semantic links within a video collection. Edges are

video clips and nodes are portals, which represent transition points between videos.

e Videoscape construction: An effective filtering strategy for portal candidates, and the adaption of
holistic and feature-based matching strategies to video frame matching. The system also includes
a graph-based spectral refinement strategy which, when placed into our coarse-to-fine graph con-
struction strategy, enables us to automatically find portals with 98% precision and 53% recall.

Parts of this work were completed with colleague Kwang In Kim; see Chapter 5 for full details.

e Transition construction: A practical demonstration of how to generate various different image-
and geometry-based transition types, including combining geometry reconstruction, tracking and

stabilization to generate dynamic transitions with 3D geometry.

o Transition preference: A user study analysing preferred transition types across scene and view-
point changes, and heuristics for their appropriate use. A detailed analysis of transition artefacts,

leading to further heuristics which rank the relative importance of different artefacts.

e Videoscape exploration: An explorer application that enables intuitive and seamless spatio-

temporal exploration of the Videoscape, based on several novel exploration paradigms.

e Videoscape evaluation: Three user studies providing data comparing Videoscapes to existing
systems. The first experiment quantitatively and qualitatively assesses transitions for their ability
to improve spatial awareness when switching between two videos in map-based interfaces. The
second experiment qualitatively assesses Videoscapes tours as summarization tools. The third
experiment both quantitatively and qualitatively assesses Videoscapes as a tool for finding content
within video collections. We also measure participant preference for different interface elements

and for the system as a whole.
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Much of the content for this thesis is derived from the following paper, though here this content is

significantly expanded:

James Tompkin, Kwang In Kim, Jan Kautz, and Christian Theobalt. Videoscapes: Exploring

Sparse, Unstructured Video Collections. ACM Trans. Graph. (Proc. SIGGRAPH), 31(4), 2012

During the doctoral study for this thesis, the candidate student also contributed to the following peer-

reviewed publications and juried exhibitions:

Philippe Levieux, James Tompkin, and Jan Kautz. Interactive Viewpoint Video Textures. In Visual

Media Production (CVMP), 2012 Conference on, 2012.

Kwang In Kim, James Tompkin, Martin Theobald, Jan Kautz, and Christian Theobalt. Match
Graph Construction for Large Image Databases. In European Conference on Computer Vision

(ECCV), 2012.

Miguel Granados, Kwang In Kim, James Tompkin, Jan Kautz, and Christian Theobalt. Back-
ground Inpainting for Videos with Dynamic Objects and a Free-moving Camera. In European

Conference on Computer Vision (ECCV), 2012.

James Tompkin, Samuel Muff, Stanislav Jakuschevskij, Jim Mccann, Jan Kautz, Marc Alexa, and
Wojciech Matusik. Interactive Light Field Painting. In SIGGRAPH 2012 Emerging Technologies,
2012.

Miguel Granados, James Tompkin, Kwang In Kim, Oliver Grau, Jan Kautz, and Christian
Theobalt. How Not to Be Seen - Object Removal from Videos of Crowded Scenes. Computer
Graphics Forum, 31(2pt1):219-228, May 2012.

Henrik Lieng, James Tompkin, and Jan Kautz. Interactive Multi-perspective Imagery from Photos

and Videos. Computer Graphics Forum, 31(2pt1):285-293, May 2012.

James Tompkin, Fabrizio Pece, Kartic Subr, and Jan Kautz. Towards Moment Imagery: Automatic

Cinemagraphs. Visual Media Production (CVMP), 2011 Conference on, 2011.

Feng Xu, Yebin Liu, Carsten Stoll, James Tompkin, Gaurav Bharaj, Qionghai Dai, Hans-Peter
Seidel, Jan Kautz, and Christian Theobalt. Video-based Characters - Creating New Human Per-
formances from a Multi-view Video Database. In ACM Transactions on Graphics (Proceedings of

SIGGRAPH), 2011.

Beste F. Yuksel, Michael Donnerer, James Tompkin, and Anthony Steed. Novel P300 BCI In-
terfaces to Directly Select Physical and Virtual Objects. In 5th International Brain-Computer

Interface Conference, pages 5-8, 2011.

Beste F. Yuksel, Michael Donnerer, James Tompkin, and Anthony Steed. A Novel Brain-computer
Interface using a Multi-touch Surface. Proceedings of the 28th International Conference on Hu-

man Factors in Computing Systems - CHI ’10, page 855, 2010.
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e Jennifer G. Sheridan, James Tompkin, Abel Maciel, and George Roussos. DIY Design Process for

Interactive Surfaces. Proceedings of 23rd Conference on Human Computer Interaction, 2009.

1.3 Thesis Outline

Chapter 2 presents a background review of the literature of image-based rendering, image-based envi-
ronments, and video collections. It also reviews commercial examples which exploit these approaches to
provide relevant interfaces to videos and video collections. In Chapter 3, we present work which directly
relates to our problem of structuring and exploring video collections. It identifies three key papers which
most closely relate to our problem, and through analysis finds recommendations for a video collection
system. Chapter 4 describes our implementation of a system to meet these recommendations, and de-
fines the scope of the implementation. With the broad introductions over, Chapter 5 begins the detailed
description of the system with the off-line component. We explain how to find portals and their support
sets from very large collections of video frames. Chapter 6 explains how to generate transitions from the
Videoscape graph. It describes in detail an experiment to measure participant preference for different
transition types, and analyses the artefacts within these transitions. With a Videoscape graph and a set of
transitions, Chapter 7 details the various exploration interfaces we have designed. It explains three user
studies to test our system and presents their findings. Chapter 8 reflects upon the system in discussion,
covering limitations and potential future work. Chapter 9 concludes this thesis.

Appendix A contains a detailed explanation of the background, generation, and artefacts of each
transition type. Appendix B provides additional scene analysis from the preference experiment in Chap-

ter 6. Appendices C, D, E, and F list experimental interfaces and data.

1.4 Miscellanea

Throughout this document, we reference a part of our London database that includes videos of the Palace
of Westminster and the clock tower commonly known as Big Ben. Where we reference Big Ben, we
appreciate that we do so incorrectly: that Big Ben is the heaviest bell of five in the tower, and that the
tower is officially named the Elizabeth Tower (and prior to 12" September 2012, named simply as the
Clock Tower of the Palace of Westminster).

Certain image results may have been auto-levelled for better contrast, especially in print. Where it
is important for the interpretation of a result this will be mentioned explicitly in the figure caption, but

otherwise it will not be mentioned.
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Chapter 2

Background

2.1 Introduction

Image- and video-based environments are media-driven representations of places and events which allow
interactive explorations through space and time. Image-based environments create photo-realistic display
imagery but cannot represent accurate world dynamics; video-based environments further attempt to
display these dynamics. Such techniques are most commonly used to represent real-world places and
events as captured by cameras, rather than virtual places and events.

Computer graphics techniques are more suitable for virtually representing places and events where
flexibility or world interactivity are important. Video games make use of world interactivity to allow
fluid and immersive player interactivity, and both video games and movies use the visual freedom that
computer graphics provides to create novel, otherworldly aesthetics. The type of environment to be
represented and the interface/application goals are key to deciding which approach to use: real-time
rendering is not necessarily realistic, visual effects rendering cannot provide interactivity, and both ap-
proaches often require man-years of content creation. Alternatively, image- and video-based approaches
are most useful for applications where accurate or realistic representation of the real world is important,
where limited interactivity is acceptable, and where man power is limited. The difficulty with image-
and video-based environments comes with turning the captured images into an interactive experience.

The development of video-based environment techniques has been, in part, dependent upon ex-
ponential improvements in computer storage and compression. Over the past 20 years, this has made
feasible the collation of large digital video collections with thousands of hours of video on a single disk.
More recently, concurrent exponential growth in the speed of telecommunications has created online
repositories to which years of video are uploaded daily'. Methods to exploit video collections to create
video-based environments would have access to more video than ever previously. However, new tech-
niques to cope with these ever-increasing stores need to be developed and, given these, new interfaces
need to automatically exploit similar content and provide semantic connections between videos within
video-based environments.

To provide context to this thesis, and to ground the literature review in Chapter 3, we present a back-

1 As of 15th June 2012, YouTube receives 8 years of content uploads per day [Youl2], though this number may include dupli-

cates and forbidden content.



2.2. The Breadth of Image-based Rendering 19

ground to image-based rendering and video-based collections and environments. Image-based rendering
is a broad topic spanning both computer vision and computer graphics. To place video-based collections
and environments within this spectrum, Section 2.2 demonstrates the range of problems that image-based
rendering has attempted to solve over the past 15 years. We then focuses on the specific history of image-
and video-based environments to learn about previous approaches to tackle the problem, their scope, and
where they have succeeded (Section 2.3). A brief history of video collections then follows in Section
2.4. Finally, a discussion of recent commercial applications of video-based environments presents the

current state of consumer interfaces to video collections (Section 2.5).

2.2 The Breadth of Image-based Rendering

Image- and video-based rendering as a field is broad. Its youth also adds to its breadth: many conventions
are yet to be formed. Not only does the term IBR apply to the creation of the final result, but it also applies
to many of the processes along the pipeline from capture to result. This pipeline often includes many
other image-based techniques that could not be called rendering, but are an intrinsic part of IBR linked by
their use of camera captured images. IBR research frequently includes work on infrastructure, calibration
and capture techniques. IBR researchers draw from many different areas of computer graphics, computer
vision, and photography.

Image capture is often the first problem faced by the IBR researcher. IBR techniques often use
cameras in various different arrangements: singularly, mounted on mobile platforms [AFYCO03], in
small clusters mimicking an omnidirectional camera [UCK™04], along a short arc focused on an ob-
ject [ZKUT04], or even surrounding an object as completely as possible, either sparsely [KSV98] or
densely [CEJT06]. Cameras are often used with ultra wide-angle (or ‘fish-eye’) lenses [XT97], or take
pictures of mirrored curved surfaces, often spheres, to create a similar effect [AFYCO03]. High dynamic
range camera techniques may also be used [UCK"04]. Almost all IBR techniques require accurate cal-
ibration of camera geometry and often calibration of colour reproduction — this is especially important
when using multiple synchronous cameras.

Many image-based techniques strive to reconstruct the geometry of a scene, be it a static ob-
ject on a pedestal, a dynamic human actor in a studio, or a real world environment with both static
and dynamic objects. Given the geometry, the captured images can be applied as textures to obtain
a photo-realistic representation that is difficult and laborious to obtain with from-the-ground-up com-
puter graphics. Segmentation is usually necessary to isolate the object of interest. In a studio, this is
frequently performed with chroma-keying [Gra04] but difference keying is also used in less controlled
environments [IBLO0, HGK™"11]. Volume reconstruction then usually starts with visual hull computa-
tion [Lau94, SSHO2, Grall]. Optimization strategies exist to improve reconstruction [MSH06, GH10]
but other approaches exist, such as using model-based templates [Sta03, CTMSO03]. Structured light
may be used to increase the accuracy of the reconstruction [WWCT05], as may other cues such as shad-
ing and shadow [ALSO7]. When attempting to capture dynamic scenes, often operations are performed
frame to frame, leaving temporal inconsistency artefacts. Space/time coherence algorithms fuse these

time instances and form a consistent spatio-temporal representation [BZST07].
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Combining the texture information stored in the captured image with the reconstructed geometry
allows us to view a realistic depiction of the object. However, correct texture mapping is not a trivial
task. View-dependent texture mapping [DYB98] allows fast texturing for arbitrary viewpoints from a
sparse set of cameras. Isolating specular reflections is necessary to reproduce the diffuse component
of a surface [TIOS]. This allows the object to be relit more accurately for a new scene [Gra06]. Full
BRDF estimation is desirable, and some techniques attempt this via iterative image comparison [BGO1].
Relighting is possible once surface properties are known [ATS07, TAL107]. More ambitious capture
rigs, called light stages, allow for extremely accurate relighting [CEJ*06, GFT11] though convincing
results are possible with simple equipment and modest constraints [PTMDO7].

For certain IBR applications, full scene geometry is not required, but some depth information is
necessary. Depth from stereo is a commonly used technique in multi-camera systems [HS04, ZKUT04].
More exotic depth techniques, such as depth from defocus [MNBNO7] or depth from a coded aperture
[LFDFO7], are applicable for single-camera systems. View interpolation is one application of IBR that
generally does not use geometry [CW93]. Here, novel frames are generated from the input images such
that a virtual camera is placed along the path between two real cameras. Often, optical flow is calcu-
lated to aid the interpolation [HS81, HS93, BBP04]. Depth can be used as an alternative to geometry
[ZKUt04]. Light fields are data structures which capture all rays of light coming in to and leaving
from an area, for a single instant or dynamically over time [LH96, GGSC96]. Once this information is
captured, we can form new views of the scene by selecting only the rays of interest.

Some image-based rendering techniques attempt to image across ultra wide field of views, up to
360° horizontally and vertically. Here, captured omnidirectional images are reprojected to allow the
viewer to observe the environment with a more natural perspective. Other techniques employ user
assisted tools and geometry proxies to create virtual environments from normal and panoramic im-
ages [OCDDO1, HAA97, KS02, AutO8]. The user is capable of moving into the picture as the ge-
ometry proxies simulate parallax and depth movement. Other techniques remain purely image-based
[AFYCO03, UCK'03, SFP10]. These techniques require dense sampling and restrict movement, but
retain a consistently higher-quality output than geometry-based techniques as less interpolation takes
place.

Figure 2.1 shows a hierarchy demonstrating the relationship between common IBR techniques.

2.3 A Brief History of Image-based Environments

One of the first uses of IBR appeared in 1980, when Lippman presented a ‘Movie-map’ of Aspen, Col-
orado [Lip80]. Movie-maps exploited then new optical videodisc technology to store video of streets
taken from a moving vehicle. The system allows the user to interactively navigate a graph representing
the streets. A still image is presented at street junctions, which are nodes in the graph (Figure 2.2).
Lippman also discusses the use of a spherical lens to afford the viewer a greater field of view. The
spherical image is reprojected onto a conical mirror such that it can be viewed undistorted. This pio-
neering work at the MIT Media Laboratory was continued by Naimark [Nai91] in imaging Karlsruhe,

Germany and the Madelaine area of Paris, France. Further work captured stereoscopic panoramas in the
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Figure 2.1: Image- and video-based rendering hierarchy as presented at the SIGGRAPH 2005 course ‘Video-based
Rendering’. Videoscapes portal reconstructions most appropriately fit into the ‘Space/time Coherence’ category of

multi-view video analysis/synthesis. Adapted with permission from [MPC'05].

See Banff! [Nai94] and Be Here Now [Nai96] projects.

Lippman writes in his conclusion that Movie-maps (and by implication VBR in general) “changes
the attitudes of graphics from one of making single images well, to making multiple images better and
more efficiently”. This change did not start to occur for many years, and IBR research did not take off

until the mid 1990s when digital imaging, storage and computation became affordable.

In 1995, McMillan and Bishop presented ‘Plenoptic Modelling” [MB95]. They propose a problem
definition for IBR as a sampling of Adelson and Bergman’s plenoptic function [AB91]. This 7D func-
tion describes all light information for a position (3D), direction (2D), wavelength band (1D), and time
instance (1D). McMillan and Bishop go on to describe a method for generating a panoramic image by
sampling this function. In the same year, Chen et al. presented ‘QuickTime VR’ [Che95]. This system
allowed for multiple images to be stitched together, creating a horizontal and vertical 360° panorama.
This panorama is viewed by a perspective projection where look direction is controlled interactively.
Both methods produce similar outcomes: 2D samplings of the plenoptic function by a panoramic image

which is interactively viewed with a perspective correct reprojection.

More adventurous samplings of the plenoptic function soon followed. Two papers in 1996 describe
and implement similar structures: the light field [LH96] and the lumigraph [GGSC96], though the idea
is much older [Ger39]. Both structures represent SD sampling of the plenoptic function (i.e., position
and direction) in 4D by parametrising rays in free space between two planes. In the case of the light
field, display is accomplished by resampling a 2D slice of lines from the 4D light field. This can be
accomplished in real-time to allow the user to observe a photo-realistic object/environment from limited
angles with correct world effects such as specularity. The lumigraph system additionally makes use of
approximate geometry, computed from silhouette, to improve the efficiency of the representation and the

quality of the results.
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Figure 2.2: A user experiences a Movie-map of Aspen, Colorado, circa 1980. Touch screens displaying map (left)
and aerial views (right) allow access to additional multimedia material. Image courtesy of Michael Naimark and

Bob Mohl; reproduced with permission from Andrew Lippman.

1997 brought the first impactful demonstration of image-based rendering, though not directly of
interactive image-based environments. Debevec et al. produced ‘The Campanille Movie’ [Deb97] and
its sister paper publications [DTM96, DYBO98], to show that simple geometry proxies from image-based
modelling and view-dependent texturing could produce convincing depictions of real-world environ-
ments. This approach, of using simple geometry proxies for transitions between real and virtual cameras,
formed the basis for many research, artistic, and commercial endeavours over the next 10 years (includ-
ing such films as “The Matrix’ [WW99], software tools such as Autodesk ImageModeler [Aut08], and
sports broadcast analysis software such as BBC / Red Bee Media ‘Piero’ [Red06]).

In a series of papers starting in 2001, Aliaga et al. demonstrate a 4D sampling of the plenoptic func-
tion that is apt for interactive walkthroughs. This collection of work demonstrates the many fields that
IBR can encompass, introducing new work in the fields of optics and calibration (catadiotropic systems),
tracking (feature globilization), geometric algorithms (fiducial planning), and compression (spatial hier-
archies for images). Culminating in a paper titled ‘Sea of Images’ [AFYCO03], Aliaga realises a photo-
realistic walkthrough of a static scene using very dense capture sampling. A motorized imaging platform
takes omnidirectional images every inch around a real environment. Markers are placed throughout the
environment to provide reliable tracking for the platform. A complex pre-fetching and caching system

then allows for the massive amounts of data to be viewed interactively.

Kimber et al. introduced the FlyAbout system in 2001 [KF01]. Four small CMOS cameras are
arranged in a square to provide horizontal omnidirectional imaging. Video recordings are matched to
map data by GPS or by hand. The user is presented with both a map and a look-around window onto

the environment. Using the mouse, users can change where they are looking and move through the
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environment as the video plays. Alternatively, they can navigate by clicking on the map.

Uyttendaele et al. presented interactive IBR explorations of real-world environments in 2003
[UCK™04]. A near-omnidirectional 6-camera system was built for the project by Point Grey Research.
The camera is head-mounted and attached to a portable RAID disk array for storage. Users control the
exploration of the environment using a joypad, and are given direction choices at manually-set bifur-
cation points along the path. Dynamic objects, such as fireplaces and televisions, are composited into
the photorealistic virtual environment by placing chequerboard markers into the real world during film-
ing. These are replaced during reconstruction by compositing dynamic images generated with traditional
computer graphics or with video textures [SSSEOO].

McCurdy approached image- and video-based environments from the direction of ubiquitous video,
with the RealityFlythrough system [McCO07]. This work attempts to situate live 2D video feeds into a 3D
space using GPS and orientation sensor data, to provide the user with a sense of how video streams relate
to one another spatially. The work introduces and assesses novel interface and visualization techniques
for abstracting numerous video streams, and also begins to assess the effect of transitions on switching
from one video to another.

Most recently, advances have been made in unstructured video-based rendering. Ballan et
al. [BBPP10] present a system which enables smooth blending between different videos which show
a spatially confined scene or event. These videos are captured with hand-held cameras, with no prior
setup or in-scene calibration. The examples shown demonstrate scenes in which 3 to 5 cameras capture a
person performing an action against a natural and potentially cluttered background, for instance, a rock
climber or a juggler in a town square. While this work makes large strides in removing the need for

image-based environments to use specialized equipment, it only applies to single scenes or events.

2.4 Video Collections

Large video collections have long existed as rooms full of film reels and video tapes, and before digi-
tization they provided much slower access times and search facilities. Such video archives, like the ex-
pansive BBC archive currently being digitized [IBRT09], typically hold programming content intended
for delivery on television or in cinemas.

With ever-increasing-capacity digital storage mediums and ever-increasing-bandwidth Internet con-
nections, video viewing and sharing services such as YouTube or Vimeo are an inevitable part of the
modern Web. These provide instant metadata search results and non-linear access within videos, making
it possible to find content much faster than with physical collections. Here, and as in the physical case,
the quality and detail of the metadata and index determines how successful a search will be. The content
held in online video collections varies greatly: they similarly include programming and music videos;
however, with the explosion of mobile devices capable of capturing video, they also contains amateur
videos of almost anything and everything. Mobile devices are also sensor platforms, able to capture
location and orientation data among other things, and some video softwares are beginning to exploit this
additional data in basic ways by geolocating video [Con11].

The current primary way of exploring a video collection is by searching through metadata such
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as name, description, rating, date, or popularity. This search is often improved by ranking algorithms.
Very few services provide content-based video collection exploration. While this is perfectly functional
for finding music videos and clips from named shows, it is much less functional when wanting to find
video of a place or an event where the search term is typically less descriptive. In this case, metadata
searches are often slow if an exact match is not found, requiring the user to scroll through pages of video
and watch or scrub through each video. These searches do not exploit content similarities or useful
additional data from sensors. At a fundamental level, collection exploration without content similarities
is more limited than with content similarities: There are many possible new interfaces and applications
for exploring video collections if we can successfully exploit content-based similarities.

The difficulty in providing content-based similarity interfaces is highlighted by work in the multi-
media retrieval and indexing communities (at venues such as ACM Multimedia and ACM International
Conference on Multimedia Retrieval). While some work in this field deals with interfaces to video collec-
tions [GS11, SB11], it mainly concentrates on the algorithmic efforts of retrieval. Since 2001, the Text
Retrieval Conference (TREC) spin-off track, TRECVID, has been collating large test collections and
defining uniform scoring procedures for evaluation of research into automatic segmentation, indexing,
event detection, and content-based retrieval [NIS12]. These collections and tasks focus on program-
ming content, surveillance, and Web video collections. Creating a representative Web video database
that is more than a toy example is difficult [OAS™09], and more specialized databases are needed for
specific research into sub-problems of generalized content-based retrieval such as for interfaces to video
collections of a place or event.

Video Google [SZ03] was one of the first systems to enable retrieval of specific video content from
a collection (in this case, a single feature-length movie, though it can be thought of as a collection of
video clips or scenes). This system quickly identifies regions of interest, each adapted based on the local
contexts of images, such that the resulting feature descriptors represent objects in a viewpoint invariant
way. Temporal consistency within video clips is used to track regions and reject unstable regions. While
this work demonstrates image-based querying of videos, it does not attempt to provide novel interfaces
to video collections which exploit spatial or temporal context.

One promising example is presented by Kennedy et al. [KN09], which attempts to automatically or-
ganize community-contributed collections of concert videos. They find amateur videos of music concerts
and make semantic connections between them by analysing and matching the audio content. However,
no such interface exists for video content similarities of places, or of events which may be organized

visually and not audially.

2.5 Commercial Examples

2.5.1 Image-based Rendering and Image-based Environments

Prior to 2005, the two main implementers of IBR research were the games and visual effects indus-
tries. Due to its inherent data intensity and inflexibility, IBR is not broadly useful for modern games,

though some games in the 1990s and 2000s exploited image-based techniques to great commercial ef-
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Figure 2.3: Left: Street View was added to Google Maps in summer 2007. Similar views are available from other
major search providers. The presented view is a perspective projection of an omnidirectional image, stitched from
many camera views. Users can navigate the streets by sparse nodes at tens of metre intervals. Right: Microsoft
Street Side allows users to drag the street left and right, viewing a multi-perspective ‘pushbroom’ composite image.

Images courtesy of Google [Goo07] and Microsoft [Micll].

fect [Cya93], including 360° panoramas [PreO1]. IBR techniques have been extensively used in visual
effects for over 10 years to integrate real and virtual scene elements. With the notable exception of
Quicktime VR, image-based environments have had little commercial success outside of these realms
prior to 2007. Quicktime VR’s commercial success was still hindered by the expense of early digital
cameras and the bandwidth restrictions of pre-broadband communication, and it became a differentiator
for estate agents, travel destinations and exhibitors. However, recent commercial interests in mapping
have brought image-based environments back into the public eye.

The broadly termed ‘search’ industries have now ventured into omnidirectional imagery for map-
ping. While niche applications such as EveryScape and SuperTour Travel [Eve09, Mok06] have existed
since 2006 offering such services (both derived from research by Oh in 2001 [OCDDO01]), companies
such as Google [Goo07] and Microsoft [KCS10, Mic11] offer street-level views from their online map-
ping applications (Figure 2.3). Currently, users navigate a sparse set of nodes, each of which holds a
panoramic image, much in the same way that Lippman proposed in 1980 [Lip80]. Capture is typically
handled by a multi-camera system attached to a car which drives through streets. Imagery is captured
at intervals of tens of metres for display to the user. Newer systems have also attempted this with video
data, notably the GlobalVision system covering parts of Switzerland [Glo09].

Other services have allowed individual users and businesses to create video environments with
consumer hardware. Quiksee [Gool0] launched a system which asked users to create node and edge
video graphs, with a 360° horizontal pan at each node and bi-directional walking videos between each
node as edges. Users would then manually mark portals from nodes to edges, creating the graph (Figure
2.4). Quiksee was purchased by Google in 2010 [The10] and their system was pulled from the Web and
has yet to be integrated into Google Maps.

Sports coverage on television now often includes replay analysis which exploits image- and video-
based rendering [Tho07, HGK ™11, Tho12]. Fixed and pan/zoom cameras are calibrated against play or
equipment features, such as white lines on a football pitch, to find the relative positions and orientations

between cameras. A virtual view may then be created to interpolate between cameras, or to pause the
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Figure 2.4: Quiksee allowed users to generate video environments by manually mapping out node and edge graphs

of places with a single handheld camera. Images courtesy of Quiksee [Gool0].

action for analysis at a novel camera location, for instance, to see whether a player was off-side. This
also allows analysis graphics to be overlaid onto video by using simple proxy geometry. Various media
companies and software vendors produce competing systems for broadcast use [Spo98, Red06, Haw(07,
Lib07]; however, the leap to allow home users to download a sports event and control the viewpoint has

yet to be made.

2.5.2 Video Collections

Before Web video collections, interfaces for browsing video collections usually resided in video editing
softwares. Here, videos are often presented as icons or as rows of thumbnails. Moving the mouse over
the thumbnail often scrubs through the video, allowing the user to see all the available content. Profes-
sional editing softwares provide a complete data management system, handling time codes, synchronous
footage from multiple angle, and stereoscopic data [App12, Avil2, Adol2a]. Consumer tools provide
browsing interfaces which are much the same, though usually with less tools and simpler interfaces.
However, some support for content browsing is being integrated into video editing softwares. For exam-
ple, the iMovie ‘People Finder’ feature uses face detection and recognition to allow a collection to be
sorted by the people that are present within it [App11].

Another way that consumer editing softwares have tried to provide video collection analysis is
with automatic video collection summarizations. These features are born out of research that often ex-
ploits spoken audio and closed captioning to provide better summarizations [Chr06]. For consumers,
so-called ‘InstantMovies’ [Ado12b] or ‘AutoMovies’ [Mic12] generally try to find high-quality or inter-
esting footage from a collection of videos to automatically create a montage. This is a challenging task,
and understandably the results cannot maintain a sense of story; however, they do provide a one-click
button for users who have no patience for video editing.

More recently, Web-based interfaces to video collections have allowed text searches through meta-
data. Websites such as YouTube [Gool2b] or Vimeo [Vim12] collate millions of videos from almost
every possible source and contain many different kinds of content. Text-based search tools parse video

titles and descriptions to provide instant access to vast collections. Videos which are related by similar-
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Figure 2.5: Left: Switchcam website. Up to 3 different synchronized user videos can be selected from underneath
the main video window, with a separate audio channel selection from any of the 3 videos. Centre: The Vyclone iOS
application attempts to cut together montages of video from synchronized user video cameras. Nearby Vyclone users
are identified so that group video recording sessions can be started. Right: If a user does not like the automatic

montage, they can montage manually. Images courtesy of Switchcam, The Register [Thel2], and Vyclone.

ities in these text data are ranked and presented as alternative choices in much the same way as general
purpose search engines.

Research similar to Video Google [SZ03] and other multimedia retrieval works have been com-
mercialized in VideoSurf [Vid06], which provides Web-based video content search tools. Undisclosed
computer vision algorithms are combined with text searches to augment a more typical Web video pre-
sentation interface. Videos may be searched or refined by person and by broad categorical type (exclude
slideshows, TV episodes, etc.) and automatic visual summaries of videos are provided as hyperlinked
thumbnails for each video. However, VideoSurf does not provide novel interfaces for content based on a
specific place or event.

The work of Kennedy et al. [KNO9] has been commercialized as Switchcam [SRS11], which
launched in November 2011. Switchcam uses videos from YouTube to match the audio tracks of amateur
concert videos in hopes of providing whole concerts with multi-angle presentation. Vyclone [Vyc12]
attempts something similar, and produces an automatically or manually edited video with changing view-
points through cut transitions. Nearby users are highlighted in the Vyclone iOS application, as Vyclone
users in the same area band together to start a group recording session. With accurate time codes and
central server organization, such an application does not require any audio or video content processing;

however, exactly how Vyclone works is not public knowledge. Figure 2.5 shows both of these systems.

2.6 Conclusion

Video-based environments provide little flexibility compared to traditional computer graphics. The user’s
travel is often restricted to the camera’s travel, or some subset of cameras which does not break the as-
sumptions of the image-based rendering technique and still produces pleasing results. It is generally hard
to edit video-based environments. Simple editing operations in computer graphics, such as relighting,
become very difficult to perform on video-based environments. Computer graphics techniques also allow
the distortion of reality through simulation or imagination. The breadth of possible content able to be

created and displayed by computer graphics is far larger than that which can be captured and presented
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in a video-based environment.

However, video-based environments provide a compelling alternative to traditional computer graph-
ics for many applications. Their results are formed from real-world imagery and often provide a vivid
experience. In many cases, no visual abstraction is necessary by the viewer and this is a desirable prop-
erty for many applications which wish to show the real world. Video-based environments suffer fewer
problems than traditional computer graphics in presenting real-world phenomenon, such as complex
motion, light interactions and volumetric effects. Video-based environments are a very fast method of
reproducing a real-world environment and, depending on the data, can often be captured and processed
in minutes. Video-based environments also provide a compelling alternative to pure video solutions
[Lip80]. The exploratory interaction creates an immersive experience and stimulates a sense of place.

Digital video collections are ever increasing in size and scope. Google Street View-like video ex-
periences already exist in dedicated video collections as these are captured densely and rigorously with
specific equipment. Their exploration is paired with specific interfaces to exploit the spatial relationships
between video clips. However, collections of Web videos typically provide no content-based interfaces at
all. Exploration of these vast databases is by metadata searches, which provide only general information
about whole videos and is often inaccurate and incomplete. While some new commercial ventures are
exploiting computer vision to provide novel applications for specific capture scenarios, they do not pro-
vide interfaces to explore the general relationships between content. Importantly, no existing techniques
provide interfaces to explore sparse, casually captured video of content joined by place or time.

In Chapter 3, we explore the state-of-the-art in video-based environments and video collection

interfaces to identify opportunities to provide better video collection interfaces.
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Chapter 3

Literature Review

3.1 Introduction

Existing image- and video-based rendering techniques have not yet been extended to work with video
collections. Recent work has attempted to construct novel video interfaces for subsets of this problem: a
few videos of the same scene [BBPP10], a few low-framerate videos registered with sensor data [NWO05],
and single tour videos [PWCO08]. However, there has been little work thus far which attempts to provide
novel interfaces for videos of places or events more similar to what may be found in Web video collec-
tions. In the same context, there has been little work to provide novel video-based rendering interfaces
for collections with hundreds or thousands of sparse, unstructured videos of a place or event, let alone
millions of videos.

Building on the work in Chapter 2, we broadly review work in the relevant fields of content-based
retrieval, media collection structuring, and rendering and exploring media collections in Section 3.2.
From this, in Section 3.3 we identify key works which provide novel interfaces for videos and collections
of videos. We critically assess these works to see whether their assumptions and solutions hold for our
scenario, and discuss what requirements can be deduced for the system we will implement (Section 3.4).

Finally, this chapter concludes with a summary of the major points discovered (Section 3.5).

3.2 Related Work

In this section, we will review representative work from the most closely related fields of research. Any
system built to tackle the problem in this thesis will use key techniques include a) feature extraction,
matching, and content-based retrieval, b) graph and geometric media collection association and struc-
turing, and c) video-based rendering and video applications and interfaces. This review provides an

overview as following sections will detail specific works that are most relevant.

3.2.1 Content-based Retrieval

Finding content correspondence between videos relates to content-based image and video retrieval from
an off-line database or a Web database, see Datta et al. [DJLWO08] for a survey. To recover these con-
nections, we have to solve a content-based retrieval problem to match individual video frames against

a database of video frames. Content-based image and video retrieval [Kat92, FSNT95] has received
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significantly increasing interest over the last two decades. There are a variety of techniques for or-
ganizing, annotating, and retrieving photographs and videos from an off-line database or from the
Web [SWST00, CCMVO07, SZ03].

Two recent works on video-based retrieval and annotation are noteworthy. Video Google [SZ03] is
one of the first systems that enables video retrieval. It can robustly detect and recognize objects from
different viewpoints and so provides image-based retrieval of contents in a video database. There has
also been research into retrieving and annotating geographic locations or spatial landmarks. For instance,
Toyama et al. [TLRAO3] inferred the spatial location of photographs from metadata such as time stamps,
owner labels, and GPS location stamps. Photographs can then be connected to a map and queried based
on spatial cues.

Often, visual content is much more useful than metadata content, especially when the latter are
not always available. Kennedy and Naaman [KNOS8] used visual features, metadata, and user-tags for
clustering and annotating photographs. The underlying idea is to exploit the metadata and user tags
to quickly generate a set of candidates and then to refine the results using visual features. Based on
measures of the coherence and the connectivity of the clusters, representative photographs are identified
and presented as a summary of a location. Additional related work in image retrieval and annotation can
be found in [ZZST09, SMV09].

Our approach, outlined in Chapter 4, is different from the above-mentioned methods in that, except
for the videos themselves, no additional information is required. However, when GPS and orientation
information are available, we can further embed our video collection onto a map, see Chapter 7. The
goal of our work is not pure content retrieval; instead, we want to structure video data such that it can be
explored intuitively and seamlessly.

Robust key-point matching could be used for content correspondence identification. This approach
has been used in recent work on content-based geolocation of images [BKC™10, ZS10, LWZT08]. To
increase retrieval performance, Li et al. [LWZ108] build a graph structure — the iconic scene graph —
which relates images of a landmark and only contains a sparse set of representative images. In Chapter
5, through spectral refinement we also filter out erroneous portals in our graph, which is related in spirit
to identifying iconic images. However, our setting is different since our graph models entire video
collections covering many landmarks, and our filtering and matching technique are adapted specifically

to our sparse video data.

3.2.2 Structuring Media Collections

Since casually captured community photo and video collections stem largely from unconstrained envi-
ronments, analysing their connections and the spatial arrangement of cameras is a challenging problem.
However, the rewards are great, leading to synthesized novel views of locations. Fortunately, we can
benefit from the massive amount of media data that is nowadays available for many locations on Earth
in community Web platforms.

In their Photo Tourism work, Snavely et al. [SSS06] took on this challenge: Given a set of pho-

tographs showing the same spatial location (e.g., images of ‘Notre Dame de Paris’), they performed
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structure-from-motion to estimate cameras and sparse 3D scene geometry. The set of images is arranged
in space such that spatially confined locations can be interactively navigated. Recent work has extended
this approach to create multi-view stereo geometry reconstructions from photo tourism data [GSCT07],
to use graph constraints to disambiguate similar visual relations [ZKP10], to find paths through images
taken from the same location [SGSS08, GBQV09], and to apply cloud computing to enable signifi-
cant speed-up of reconstruction from community photo collections [ASS™09]. Other work finds novel
strategies to scale the basic concepts to larger image sets for reconstruction [FGG™10], including recon-
structing geometry from frames of videos captured from the roof of a vehicle with additional position

and orientation sensors [FPL*10].

While some of these problems are parallel to ours, transfer of their approaches to casually captured
videos is non-trivial. For instance, a naive application of [FGG™10] on a sparse, unstructured video
collection cannot yield a full 3D reconstruction of the depicted environment from the video data: we
could hardly reconstruct a dense geometry of a wide area of London from a moderate set of casually
captured videos. Even with dense video sampling, photogrammetric geometry reconstruction cannot

currently deal with real-world scenes with dynamic objects and specularity.

In contrast to previous systems, which attempt to reconstruct a dense geometry for a confined lo-
cation, our defined approach in Chapter 4 aims to recover and navigate the linkage structure of videos
covering a much larger area. As video coverage is sporadic, we reconstruct scene and camera geometry

only for specific locations of content correspondence.

Kennedy et al. [KN09] used audio data to align video clips that are known to have been recorded
at the same event by different people, e.g., a concert. However, they do not go farther and automatically
link networks of videos from unknown locations, nor do they use vision and video-based rendering

techniques to compute immersive 3D transitions.

Recently, advances have been made in analysing and representing the connectivity of images as a
graph. Philibin et al. [PSZ11] proposed geometric latent Dirichlet allocation, which exploits the geomet-
rical collocation structure of objects in images and thereby enables accurate image matching for specific
landmarks. Weyand and Leibe [WL11] proposed an algorithm to select favourite views of an object
based on the analysis of how views of it overlap. These algorithms focus on improving pairwise image
matching or constructing representative views of image collections. As we will see in Chapter 5, they

can all benefit from our analysis of global context in the graph structure.

Image Webs [HGO™ 10] constructs and visualizes a graph structure reflecting the large-scale con-
nectivity of images. The system first builds a sparsely connected graph by performing feature-based
matching, which is then made incrementally denser via connectivity analysis. In Chapter 5, our graph
construction scheme also relies on key point matching followed by connectivity analysis based on the
graph Laplacian. However, as opposed Image Webs, we want to filter out unreliable matches rather than

to increase graph connectivity.
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3.2.3 Rendering and Exploring Media Collections

Image- and video-based rendering methods synthesize new views from photos and videos of a scene
[Shu07]. This is an important component of an exploration interface as synthesis of intermediate views
is required to display a smooth transition between two video views. For more detailed reviews of image-

based rendering, readers are referred to the literature [SK00, Zha04, CSDI11].

Image-based rendering methods have been applied to generate interactive 3D walkthroughs from
image and video data, often captured with specially fitted camera setups. The pioneering work of Lipp-
man [Lip80] realized one of the first systems for interactive navigation through a database of images.
Subsequent research attempted to automate this process. For instance, Kimber et al.’s FlyAbout [KF01]
captured panoramic videos by moving a 360° camera along continuous paths and synthesized novel
views by mosaicking. Users chose a path through a constrained set of automatically pre-computed
branching points, and novel view synthesis is required only at these points. We describe heuristics,
investigated through a user study, to select appropriate transition rendering styles beyond mosaicking

(Section 6.3).

In a telepresence context, McCurdy and Griswold’s RealityFlythrough [NWO0S5] establishes connec-
tions between videos from mobile devices based on GPS information and provides a simple transition
between overlapping videos in a manner similar to Snavely et al. [SSS06]. At transitions, videos are
projected onto their respective image planes. The view synthesis problem is simplified by allowing the
users to choose a path from a constrained set of pre-specified branching points, and by registering the
images with a geographical map.

Aliaga et al.’s Sea of Images [AFYCO03] requires a special robotic acquisition platform and fidu-
cials placed into the scene. As a consequence, the system operates in a spatially confined environment
(e.g., a library) where a dense set of views can be easily captured with standard cameras. The extrin-
sic parameters of the cameras are calibrated with image-plane fiducial locations and bundle adjustment
[HZ04]. Novel views can be efficiently generated by sampling from the dense set of input views. Fur-
ther related approaches exist for navigating through real scenes captured in photographs and videos
[DTM96, SFP10]. However, these methods rely on a constrained capture environment (e.g., special
hardware or confined spatial locations), which facilitates processing and rendering. In contrast, in Chap-
ters 5 and 6, we exploit vision techniques to automatically find the connections between videos captured

under less constrained conditions.

Free-viewpoint video-based rendering research attempts to allow user control over the view onto a
scene. This scene is usually captured in a studio, and so is typically a human actor [CTMS03, MHSO05,
SHO7, TALT07, SGdA™10]. Tens of calibrated cameras compute shape from silhouette to reconstruct
the 3D geometry and texture of the performance. These works have been extended to apply to sports
scenarios, where the blue or green screen used for chroma keying is replaced with the green grass playing
field [Tho07, HGK 11, Thol2]. Other works use denser sets of cameras with narrow baselines to try
and provide photo-real view interpolation [ZKU™04, LLB*10]. However, none of these approaches are

appropriate for our sparse, casually captured data as all require specific setup or calibration.
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The video browsing system proposed by Pongnumkul et al. [PWCOS8] provides an interface to cre-
ate a geographical storyboard from a single continuous video by manually connecting frames to map
landmarks. Similarly, Zhang et al. [ZLC*10] manually register a single video to a georeferenced 3D
model of a city to provide map-based browsing and tracked video annotations. In Chapter 7, our system
improves upon these methods by automatically identifying connections between many videos, joining
them with visual transitions, and providing video annotations. We also exploit sensor data to provide a
richer viewing interface.

The technique proposed by Ballan et al. [BBPP10] enables blending between different videos show-
ing a single spatially confined scene or event. They assume a scene model with a billboard in the fore-
ground and 3D geometry in the background. The background is reconstructed from additional commu-
nity photos of the scene, and the video cameras are calibrated with respect to the background model. The
viewer can transition between the videos of the scene, at which point the proxy foreground geometry is
used to find the best possible time to cut to the other video. The system is state of the art, but is tailored to
spatially confined sets of videos that all observe the same event at the same time from converging camera
angles. It requires dense photo sets as additional input, needs some user interaction, and is streamlined
to handle scenes with a clear foreground. In contrast, our system operates with a video collection that
shows a variety of general scenes filmed from a much less constrained set of camera positions at different

times.

3.2.4 Summary

The papers presented do not tackle the problem of creating interfaces for video collections which con-
tain sparse, unstructured imagery of places. Some of the papers discussed are simply computationally
unaffordable when applied to video collections, or assume priors on content which we do not. There are
papers in each field which solve similar sub-problems of our larger problem; however, each technique
must be adapted to fit within an end-to-end system which is capable of automatically structuring a video
collection for novel interface exploration. Chapters 5, 6, and 7 will discuss these adaptions in detail
as necessary. However, there are some problems in such an end-to-end system for video collections for
which no presented solution exist, and many of these problems lie in the exploration of media collections.

As such, from the reviewed works, we identify 3 key papers to be explored in more detail in Section

3.3:

1. McCurdy and Griswold [McCO07], RealityFlythrough: A System for Ubiquitous Video: This re-
search tries to locate and present live video streams in a 3D space. The work explores the effect of

transitions upon users when switching between video streams.

2. Pongnumkul et al. [PWCO8], Creating Map-based Storyboards for Browsing Tour Videos: This
work attempts to provide map-based interface tools for single tour videos. Many of these interface
elements may be useful for our problem, and we will see if their ideas extrapolate to multiple

videos in a collection.

3. Ballan et al. [BBPP10], Unstructured Video-based Rendering: Interactive Exploration of Casually



3.3. Key Papers in Detail 34

=23 (-?» Birdseye View

Figure 3.1: The current live video stream is shown to the left, with a geographic map showing camera paths to the

right. Each camera is represented by one colour: arrows show the position and orientation of historical views, and

view frusta show the position and orientation of the live streams. Image reproduced with permission from [McCO07].

Captured Videos: This paper provides insights into how vision and graphics techniques may be
applied to a few videos of a single event. These techniques are highly relevant for video collection

interfaces, but must be assessed with care when applying them to hundreds of videos.

3.3 Key Papers in Detail
3.3.1 RealityFlythrough: A System for Ubiquitous Video

McCurdy imagines a system to ‘tap into’ multiple live video feeds to remotely explore the world in real
time, and introduces the RealityFlythrough system as a way to accomplish his vision. He focuses on
providing the user with a sense of how 2D video streams relate to one another by situating them in a
3D space and by providing transitions when switching between streams. McCurdy uses the compelling
example of teams of workers relaying live video back to a control room, for policing, disaster recovery, or
remote monitoring. Under these situations, McCurdy assumes limited bandwidth of either IEEE 802.11b
or EV-DO wireless protocols in mesh networking setups, for multiple video streams, leaving an effective
bandwidth of 100Kbps in a typical 3-camera deployment. As such, the video resolution is CIF (352x288)
or QCIF (176x144) and the framerate frequency of the video is at most 11 Hz but is commonly 0.67 Hz
or 1 Hz.

The research uses sensors to locate video streams in a common 3D space — each camera is paired
with a GPS receiver and a MEMS compass. The data from these sensors provides sufficient information
both to allow camera interpolations in a rendered 3D space and to provide a 2D top-down map of all
current video streams (assuming a map is provided). McCurdy takes snapshots from the low temporal
sampling to progressively add more views of the real world to the map. Transitions use these old im-
ages, with added sepia tone or age-indicator bars, as intermediate frames to join spatially separated live
streams. Figure 3.1 shows the system in action. Arrows on the map show potential old views, with view
frusta showing current live views.

SIFT matching [Low04] to robustly align views is also tested, but this system was too compu-
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Figure 3.2: Top: A transition which ex-
ploits scene-to-scene closure, as no in-
termediate views exist. The motion in
3D space helps users infer the spatial
relationship between views even though
empty space is visible between the two
images. Middle: A transition sequence
with intermediate views, using only sen-
sor data. Here, scene elements are mis-
aligned. Bottom: The same transition
sequence with SIFT feature matching for
robust alignment. The two intermediate
views now form a single canvas. Im-
ages reproduced with permission from

[McCO7].

tationally expensive at the time to use in live sessions. However, McCurdy does express the visual
improvement that occurs with correctly registered views during a transition. When insufficient interme-
diary frames exist for a transition, or there is no match, the user sees empty 3D space when switching
between video streams. McCurdy suggests that Gestalt closure explains why this effect is not distract-
ing, and that the motion of one frame sliding out of view provides enough sense of motion to produce
scene-to-scene closure (as defined by McCloud [McC94]). Figure 3.2 shows this kind of transition, and
the improvement that robust feature matching can make to the appearance.

McCurdy describes five experiments which use this system:

Experiment 1 [McCO07, p. 121]: An experiment to assess preference for various video encoding param-
eters, specifically framerate variations. While not strictly relevant to our situation, the 14 partic-
ipants generally preferred low framerate video (0.67 Hz and 1 Hz) over middle framerate video
(5 Hz) as it was less jerky, but preferred ‘high’ framerate video (11 Hz) over both (see [Wan95,
p- 223] for an explanation of this phenomenon). We assume that full framerate (30+ Hz) video is

available at all times and that bandwidth is not a restriction.

Experiment 2 [McCO07, p. 148]: Spatial awareness with and without sensor-only transitions is assessed.
11 participants were asked to draw on a paper map as many objects as they could recall from a
RealityFlythrough of a house with 3 rooms. 31 spatially located still images represented the rooms
virtually, and participants explored the space for 2 minutes. While subjectively assessed, McCurdy
notes that the participants who saw transitions when moving about the virtual house covered more
space than those who did not see transitions, and so concludes that participants believed they
had understood the space more quickly with transitions as they did not linger in any one place.

McCurdy also notes that rotation transitions were easier to understand than translation transitions
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Figure 3.3: Left: Experiment 3 results, suggesting some improvement in the transition case. Right: Experiment 4

results, suggesting improvement for the transition case. Figure reproduced with permission [McCO7].

given this particular density of images.

Experiment 3 [McCO07, p. 152]: This sensor-only transition experiment asks 30 subjects to choose be-
tween 4 different options for the camera configuration of a particular transition, in both familiar
(university food court) and unfamiliar (disaster scene) locations. Figure 3.3 shows the results.
McCurdy concludes that transitions provided participants with additional information that is ben-

eficial in determining the spatial relationships between cameras.

Experiment 4 [McCO07, p. 159]: More complex transitions are introduced in this experiment. 18 partic-
ipants assess 3 transitions: a cut, a sequences of dissolved images which are not spatially located,
and a 3D sensor-only transition. Three scenes are used: simple, a large outdoor space with only
camera rotations; hallway, a walk down an L-shaped corridor full of people, in a disaster setting;
and complex, within one room, but containing 180° rotations and some walking, again in a disaster
setting. Participants assessed 3 videos for each scene and transition type. The task was to describe
aurally how to travel from the first camera to the second camera, and to provide a confidence rat-
ing on a Likert scale. Figure 3.3 shows the results. Accuracy and confidence improved slightly
with transitions, but it is not known whether this was a statistically significant result [McCO07, p.
168]. This experiment did not include an additional top-down map, and so McCurdy concludes

that transitions viewed in isolation provide good spatial understanding.

Experiment 5 [McCO07, p. 171]: The final experiment asks 7 pairs of participants to use the Reali-
tyFlythrough system to analyse a complicated disaster scene scenario. Participants were asked
to answer questions such as ‘how many people are injured and how severe are their injuries?’,
or ‘what is the status of potential escape routes?’. This experiment is holistic and presents only
anecdotal conclusions about how participants seemed to use the system. McCurdy states that “af-
ter spending only 5 minutes in such an environment [participants] can answer detailed questions
about what they saw and they can describe with incredible detail what they experienced. It was
almost as if they were there, but in fact their experience really went beyond being there [HS92]”,

as they had gained extra awareness of the environment.

Experiments 2, 3, and 4 provide some evidence which, while not statistically verified, suggests that visual
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transitions between imagery are a powerful tool to increase spatial awareness and scene comprehension.
Experiment 4 in particular suggests that transitions by themselves are sufficient to express the spatial

relationship between video streams, and that a map overview is not essential.

Analysis

It is clear from McCurdy’s presented experiments and experience that the idea of spatially locating video
feeds is a useful one, at least for control room/remote worker scenarios. Transitions improve spatial
localization and scene understanding, and this is also born out in more rigorous experiments by Mor-
van et al. [MOO09], and Veas et al. [VMK™10]. It is also suggested in Experiment 4 that comprehension
improved as the fidelity of the transition improved, though McCurdy does not attempt any more compli-
cated transitions involving geometry proxies or full geometric scene representations.

McCurdy’s thesis assumes that video must be delivered through a low bandwidth wireless network
connection, and so the RealityFlythrough system samples sparsely in time. Our situation is different
and we makes no such assumptions, as we wish to work with large collections of full framerate videos.
However, an important anecdote is stated [McCO07, p. 119]: the presentation of video streams at 1 Hz
snapshots was preferred by controllers to higher framerate 5 Hz video, as it was less distracting for
decision making. This kind of abstraction is useful when designing interfaces that might present multiple
video streams (see Chapter 7).

Some of the techniques presented are directly applicable to existing video collections (for example,
SIFT matching for registration) while others require us to posit that GPS and orientation sensor data will
be available in future video collections. Given the popularity of smartphones and the potential uses of
video with embedded sensor data, we believe it is probable that such collections will exist in the future;
however, there will always be a significant amount of video that has no such metadata (largely, almost all
currently recorded video) and many situations where sensor positioning is unlikely to work (for example,
with video captured indoors). As such, any solution should attempt to build an interface which works
with and without sensor data.

For an interface for video collections without position and orientation sensor data, McCurdy’s result
suggesting that transitions by themselves, without a map, are sufficient to express the spatial relationship
between two video streams is an important one. Were this not the case, we would have to try and build
a complete spatial representation of a sparse, unstructured video collection using only the visual data
within the video collection. While automated mapping techniques (e.g., SLAM) have made great strides
in the past 20 years, this is a task outside the scope of this thesis as currently no techniques are able to

provide this complete spatial representation from such unorganized and unreliable input.

3.3.2 Creating Map-based Storyboards for Browsing Tour Videos

Pongnumkul et al. [PWCO08] tackle the problem of tour videos, where a camera moves through a real
environment to capture the essence of a place. Often, unedited tour videos are boring, over-long, and
less informative than they could be. Typically, hand-held cameras with narrow fields of view cannot
give a good perspective onto the spatial layout of a place, and often the tour is unplanned and haphazard.

Pongnumkul et al. solve this problem by augmenting the video with a map, by providing map-based tools
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Figure 3.4: Pongnumkul et al. viewing tool. a) The layout of the UL b) The pin which identifies the location of the
current scene. It either updates automatically when playing the video, or can be controlled by the user for location-
based navigation. c) When hovering over a thumbnail on the storyboard, a pop-up window shows a larger keyframe

image along with additional text description. Image licensed for reproduction from [PWCOS8].

to browse the video, by analysing the video for coherent, high-quality shots, and by providing interface
tools to fast-forward or skip through low-quality shots.

The technique begins by pre-processing the tour video. Feature points [Low04, MS04, MCUPO04]
are extracted for 1 frame in every 2 seconds of video, and a SIFT descriptor is extracted for each point.
In frames which are sharp, the SIFT response will likely be large as strong image edges will likely be
present; conversely, if the video is blurry or out of focus then the response will be small. As such, the

quality @Q; of a frame at time ¢ is defined as:

maxF — | F)
Q, = mexF R 3.1)

maxF — minEF

where F is the set of extracted features for all frames, and min/max operate on the number of features
per frame in F'. Q can then be thresholded to find shots of relative quality.

Shot coherence is computed by looking at the number of feature points which match between ex-
tracted frames. A 2D coherence matrix is formed, whereby the number of matches between all pairs
of frames is computed. All matches in the matrix are projected to the diagonal, and regions along the
diagonal with relatively high numbers of matching features are kept as coherent shots. The frame which
most strongly correlates to all other frames within a shot becomes the keyframe for that shot. The quality
of a shot is defined as the mean quality of its constituent frames.

To geolocate the video over time, users pin shots and their keyframes onto a map by hand. Arrows
are automatically added between pins to approximate the path of travel within the video. The size of the
pin is proportional to the length of the shot, and the width of the arrow between the pins is proportional
to the time interval between shots. Figure 3.4 shows the viewing interface.

The system provides a variety of viewing modes which exploit this information. First, the system
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Figure 3.5: Pongnumkul et al. advanced viewing modes. a) Coherent shot segmentation. b) High-quality summa-
rization. c) Intelligent fast forward. d) Defined-length video summarization. Figure licensed for reproduction from

[PWCO8].

can present a high-quality summarization of the tour video by playing only high-quality, coherent shots.
Second, the system can provide such a summarization to a required time length, by increasing and de-
creasing the length of each coherent shot out from its keyframe. Third, the user can employ an intelligent
fast forward, whereby low-quality, incoherent shots are sped up. In this mode, the sped up shots play
such that the speed is spatially consistent, leading to a uniform speed along arrows in the map. Figure
3.5 shows these playback modes diagrammatically.

The paper concludes by presenting an exploratory user study. 13 participants spent an average of 45
minutes using the system, including familiarization and tutorial time, viewing two different tour videos
of 38 and 10 minutes for 5 minutes each. Interface controls were instrumented to collect usage data.

Of all interface features, three were used much more than others. In order of most frequent use:
playing highlights, timeline slider scrubbing, location controller scrubbing. No significances are pro-
vided, but these features were used at least twice as frequently as the next closest feature [PWCOS,
Figure 8]. Upon asking participants which advanced viewing modes they preferred, the top two in or-
der were playing highlights and map navigation. Pongnumkul et al. postulate that map navigation was
not higher because of the limited amount of time in the experiment. Participants suggested that map
navigation would be more useful when there was more time.

The more complicated of the two map ‘storyboards’ was found to be confusing, as it was multi-
layered to represent different floors of a building. Also, participants did not frequently use the thumb-
nails to navigate the video as, they postulate, the interface gave instant non-linear access to the whole
video. This kind of access was not common for Web videos at the time of publication, though now with
progressive streaming this is less of an issue. If users had to wait for video to buffer, cached thumbnails
may be used more frequently to explore the video. Some participants also suggested that animations or
a 3D layout might be easier to follow. However, in general, Pongnumkul et al. conclude that that the

feedback about the interface was very positive.

Analysis

This work has two obvious peripheral limitations that are easily fixed. The first is not having any auto-

matic geolocation. Once location metadata is embedded in a video stream, it should be easy to simplify



3.3. Key Papers in Detail 40

the raw data to show an appropriate path for display. Arrow thickness between pins currently relates
to time — this mapping could carry over to the thickness of a real path. The second is that the map
storyboard itself also needs to be provided, and with location metadata this could be automatically gen-
erated. Admittedly, there is still creative value in allowing the user to specify both pin location and map
storyboards themselves.

Conceptually, the metrics for determining coherent and high-quality shots are questionable. These
metrics only work well if the content is of a particular type, where low-quality parts of the video also
happen to suffer blur or contain few features. This is certainly the case in some footage, but it is certainly
not the case in all footage. These metrics become a measure of interestingness or relevance when placed
within the intelligent fast forward advanced viewing mode, and we believe this does not hold in the gen-
eral case. Interestingness is an abstract, subjective measure and does not directly relate to video quality
or coherence as defined in this work. It may be possible to deduce better metrics for interestingness from
video collections, by assuming that interesting or relevant content appears frequently (or infrequently)
among the collection.

Pongnumkul et al. suggest that, for future work, different tour videos captured by different people
at the same place could be coupled together on the same map storyboard so that viewers can experience
a more complete virtual tour of the area. However, they do not suggest how to overcome any of the

problems that this would bring:

1. If we directly apply their method, there would be no content correspondence between different
videos within the collection. Parts of videos that contain the same visual information would not

be identified, and we posit that this is an important feature of any video collection system.

2. The preprocessing is quite computationally expensive, requiring twice as much time as the video

is long. For large video collections, this preprocessing needs to be carefully considered.

3. What does a summarization of high quality, coherent shots look like in a video collection? Is it
simply a concatenation of all such shots in the whole collection? Should such shots be montaged

by a similarity measure? Should a coherence measure be applied across the whole collection?

4. The pins/arrows representation is an abstraction of the true camera path in the videos. Where are
pins placed? From where the video was taken, or at where the video is looking? With multiple
videos taken from the same place, or looking at the same content, this abstraction breaks down

and can no longer uniquely abstract content in multiple videos.

5. The density of information presented would become large very rapidly, with many thumbnails
and coherent shots vying for the same screen space. There needs to be a way to prioritize which
information is important across videos in the collection. Further, they also suggest that, in future
work, thumbnails could be replaced with video clips. However, with the number of thumbnails
present, this runs counter to McCurdy’s suggestion that many high-framerate video clips presented
at once are confusing. Simple interface elements can solve this problem, like only displaying

dynamic thumbnails on mouse hovering, or by providing scrubbable thumbnails.
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Figure 3.6: Ballan et al. example transition frame subset. The background climbing wall geometry is blurred to
accentuate the virtual camera motion, but the foreground climber is not. The foreground climber cuts between the

two video views between the 4th and 5th images. Images licensed for reproduction from [BBPP10].

While the naive extension of simply duplicating all existing user interface elements for each video is

simple and possible, we feel it would rapidly become an unusable and confusing system.

3.3.3 Unstructured Video-based Rendering: Interactive Exploration of Casually

Captured Videos
Ballan et al. [BBPP10] try to take video-based rendering (VBR) techniques out of the studio and ex-

tend them to casually captured, real world, hand-held footage. Starting with a few video streams of a
performance, as well as a collection of photographs of the environment, the approach separately models
the scene background and a performer in the foreground. The background is modelled as geometry and
view-dependent textures, and the foreground as a video sprite on a billboard. A real-time interface inserts
VBR transitions when switching between real camera views, taking special care to ensure the performer
is centred as much as possible in the virtual camera frame. Figure 3.6 shows a generated transition.

The paper describes an end-to-end system for casually captured videos of a performance, and so
presents technical solutions to many problems along the pipeline. First, and as in [HRTT09], all videos
are synchronized by their audio tracks. Next, the background scene geometry and texture must be cre-
ated, and the camera poses for each frame of each video recovered. The collection of photographs of
the environment are passed through the same structure from motion pipeline as in [SSS06], depth maps
are computed using multi-view plane sweep based on normalized cross-correlation, a mesh surface is
extracted using range image fusion [ZPB07], and the mesh is textured from the static photographs.

Second, camera poses are estimated by matching SIFT feature points [Low04] in the first stage to
SIFT features in each video frame. The 2D to 3D mesh point correspondence found when recovering
the geometry is then used to solve the intrinsic and extrinsic camera parameter linear system with the
direct linear transform [HZ04]. However, after this stage, camera poses are not sufficiently accurate as
similar reprojection errors can lead to a variety of different poses. Ballan et al. make an important point
that, for this application, it is only important that the camera pose produces a registration against the
geometry that looks correct, even if it is inaccurate. As such, a particle filter optimizes the camera pose
by minimizing the video frame sum of square difference from the textured mesh.

Further parts of the paper discuss in detail how to segment and matte the foreground object in
each video, how to render the foreground object in virtual views, how to constrain the motion of the

foreground object to a line in the virtual view, and how to compute the optimal foreground transition cut.
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Figure 3.7: Ballan et al. interface modes. Left: Regular mode looking down one of the cameras. Arrows in orange
allow switching between cameras. Right: Orbit mode looking down upon three spatio-temporally aligned videos.

Images licensed for reproduction from [BBPP10)].

Figure 3.8: Ballan et al. experiment
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These parts of the paper are not relevant to our scenario as we choose not to model foreground objects
at all as we do not assume contemporaneous capture. Finally, the paper describes how to render all parts

together during video transitions.

The system presents two interfaces to the set of video: a regular mode, where the viewer looks
down the lens of the camera at all times except when during transitions, and can move spatially between
videos with arrow icons; and an orbit mode, where the viewer sees the whole scene from a free-floating

virtual camera (see Figure 3.7).

Ballan et al. conduct an experiment to discover how often users would switch between videos using
various transition types, and to discover whether users liked the two interface modes. 32 participants
were asked to view 3 scenes. 4 minutes of instruction were given, and users were asked to fill in a
questionnaire after using the system. Figure 3.8 shows results for various transition types, with no clear
distinction between transition modes (though dots transitions are less preferred). From this we should
consider that many types of transition, even cuts, may be appropriate. Of the two navigation modes, 4
participants preferred regular mode, 3 preferred orbit mode, and 25 liked both. Again, this shows no

clear trend.
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Analysis

Ballan et al. demonstrate the first high-quality example of VBR for casually captured videos. Many of
the techniques employed will be useful for video collections; however, there are fundamental differences
which mean we cannot apply this approach whole.

First, for video transitions, the paper rightly states that accurate camera pose registration is not
important, so long as the resulting transition is visually pleasing. However, the approach of improving
pose registration by comparing each video frame against the recovered geometry in image space is only
possible if the recovered geometry reliably covers all of the video frame. In this paper, the background
geometry is recovered in a separate step which does not involve any of the video footage. Photographs
are specifically collected for geometry recovery, ensuring conservative coverage. In the general case,
this approach will fail: automatic geometry reconstruction cannot yet recover the shape of many struc-
tures, for instance, structures made of specular or transparent material such as glass. Equally, requiring
special capture of the scene with photographs is infeasible for all places that a video collection might
cover. While it would be possible to crowd-source photographs of many places, in general this cannot
be assured. As a consequence, orbit mode is not possible in the general case, as it assumes recovered
geometry and pose estimation. An approach which provides general interfaces to video collections of
places must be able to cope with these failure cases.

Second, in general video collections, there is no implicit assumption of synchronicity. The content
in the videos may share a similar background, but not necessarily a similar foreground. For videos in
a collection which do share the same time instance (as could be defined by the ability to synchronize
their audio tracks), the foreground modelling approach in this work is only applicable in “somewhat”
cluttered scenes, where the object or person of interest is giving a performance and is separated in colour
or depth from the background. It also requires a small amount of manual labelling per video clip. We
cannot expect such a foreground modelling method to work for general video collections.

The experiment conducted in this work draws no strong conclusions as to which transitions are
better than others, or which interface is better than the other. From this, we can infer that different
transitions may be appropriate at different times and for different video clips. A stylized dot rendering

seems to be least preferred among all options, and a simple cut seems as effective as rendered transitions.

3.4 Discussion

It is clear that none of these three key papers can be directly applied to video collections of places, even
though each of them contains useful constituent parts. We summarize the literature review by defining

recommendations for a system providing more general interfaces to video collections.

1. Content Correspondence

(a) SIFT feature matching is robust but expensive, and cannot be directly applied to match all
pairs of frames within a video collection ([PWCOS], preprocessing). More advanced methods

are necessary to deal with hundreds of videos.



(b)

(©)
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SIFT features and their analysis cannot necessarily find interesting content within a video,
though they can find sharp, feature-full video frames ([PWCO08], quality/coherence metrics).

Content correspondence across videos should be investigated to improve this feature.

Time synchronization can be performed using the audio tracks of the videos. However, in
general, this will only apply to a subset of videos in the collection ((BBPP10], synchroniza-

tion).

2. Transitions

()

(b)

(©)

(d)

(e

Spatiotemporally located transitions are liked and can improve spatial awareness ([McC07],
experiments 2-4), even though they may not be used all the time ([BBPP10], experiment 1).

A system to automatically generate VBR transitions should be included.

We should not assume that geometry recovery is possible to the extent that it covers all parts
of all videos in a collection, so fall-back transitions must exist. However, geometry recovery
should be possible in some parts of some videos by exploiting the different views of a place

across videos in a collection ([(BBPP10], our analysis).

Foreground segmentation is likely unachievable in the general video collection case

([BBPP10], our analysis).

We should not assume any additional input data to the system other than the video collection
itself. It is likely that, with the proliferation of smartphones, sensor data may be available
in the future for videos collections, but this should not be assumed and fall-back interfaces
should exist ([McCO07] assumes sensors, and [PWCO08] geolocates manually). Likewise, we
should not assume that an appropriate image collection exists for all places in the video to
provide good geometry reconstruction ([BBPP10], reconstruction technique). This will make

our approach as applicable as possible for existing and archived video collections.

Transition comprehension may improve with fidelity ([McCO07], experiment 4), and many

types of transitions may be appropriate — including cuts ((BBPP10], experiment 1).

3. User Interfaces

(a)

(b)

(©)

(d)

Presenting many video streams at once may be confusing ([McCO07], experiment 1 and anec-

dotal evidence with experts).

Map-based browsing is liked, is useful, and helps scene comprehension ([McCO07] and

[PWCO08], various experiments).

Pins are not a good way of abstracting the location and orientation of a video as it can only
either identify the position of the camera or the position of the content viewed ([PWCO08],

our interface analysis).

Any representation of video frames placed onto a map must be density aware. A video
collection will contain thousands of scenes or shots, and their representation must be ordered

by some measure of importance ([PWCO08], our interface analysis).
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(e) Users most preferred watching summarizations of a tour video ([PWCO08], experiment), so

some equivalent function for video collections may also be preferred.

In the following chapter, we will explain how our proposed solution adheres to these recommen-
dations as it provides interfaces for exploring more general video collections of places and the events

within than are presented in existing work.

3.5 Conclusion

This chapter presented a review of existing work in the areas of content-based retrieval, structuring media
collections, and rendering and exploring media collections (Section 3.2). From this high-level review, we
identify and review three key papers in detail, each dealing with end-to-end systems which provide novel
interfaces for subsets of our problem (Section 3.3). The first, RealityFlythrough [McC07], locates videos
in 3D space with sensor data, and investigates various transitions for scene comprehension. The second,
for browsing tour videos [PWCO8], finds high-quality, coherent shots to allow automatic summarization.
The third, for unstructured VBR [BBPP10], provides high-quality transitions with separate foreground
and background elements for a handful of unsynchronized cameras observing the same performance.
Specific techniques from each approach are assessed for their suitability for more general video
collections. From this assessment, recommendations are devised for such a system and its user interfaces

(Section 3.4). The chapter following will propose a system and discuss how it meets these requirements.
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Chapter 4

Approach Overview

4.1 Introduction

In Chapter 2, we surveyed video-based rendering, video-based environments, video collections, and
current commercial uses of these techniques, to identify a opportunity to provide interfaces to explore
sparse, casually captured video collections of places or events. In Chapter 3, we reviewed work most
relevant to the field on structuring and exploring media collections. We analysed three key papers and
drew up a list of recommendations for any system which creates interfaces for such video collections.
In this chapter, we outline our approach to solve some of the problems with existing work and to
create a novel system for structuring and exploring sparse, casually captured video collections. We call
this system Videoscapes. We first overview our entire system in Section 4.3, then explain how each of
the recommendations are met by this system in Section 4.4. Next, we explain the system scope (Section
4.5) before finally describing the test databases collected for our system in Section 4.6. The chapter

concludes by describing the specific implementation details covered in the next three chapters.

4.2 Definitions
We begin by defining some key terms:

1. Videoscapes is the end-to-end system that takes as input a video collection and creates both a data

structure and ways of navigating that data structure through various user interfaces.

2. A Videoscape is the created data structure: a graph capturing the semantic links within the video
collection. Edges are video clips and nodes are portals. The graph can be directed or undirected,

allowing video clips to play backwards.

3. A portal is a collection of video frame spans, usually but not necessarily from different videos,
which share similar visual content and viewpoints. It represents a potential spatial, temporal, or

spatio-temporal transition between one or more video clips.

4. A support set is a larger collection of video frames which also share similar content to a portal.
However, these frames may vary in viewpoint much more than those of a specific portal, but share
enough similarity to support the key portal frames during geometry reconstruction and so aid in

creating a more complete reconstruction of the content.
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Figure 4.1: A Videoscape formed from casually captured videos and an interactively-formed path through it, con-
sisting of individual videos and automatically generated transitions. A video frame from one such transition is shown
here: a 3D reconstruction of Big Ben automatically formed from the frames across videos, viewed from a point in

space between cameras and projected with video frames.

5. The portal geometry is the automatically recovered 3D geometry of the scene depicted in the

frames at a portal, including frames in the support set.

4.3 System Overview

Our system has both online and offline components. Chapter 5 describes the offline component which
constructs the Videoscape: the graph capturing the semantic links within a database of casually captured
videos (Figure 4.1). If necessary, the Videoscape can maintain temporal consistency by only allowing
edges to portals that lie forwards in time during walks. The graph can also include portals that join a
single video at different times (a loop within a video). Along with portal nodes, we add graph nodes
representing the start and end of each input video. This ensures that all video content in the collection is
connected to the graph and is navigable. Our approach is suitable for indoor and outdoor scenes.

Input to our system is a database of videos in which each video may contain many different shots
of several locations. We expect most videos to have at least one shot that shows a similar location to at
least one other video. Here, we intuit that people will naturally choose to capture prominent features in
a place, such as landmark buildings in a city.

Videoscape construction commences by identifying possible portals between all pairs of video clips
(Chapter 5). A portal is a collection of spans of video frames from any number of videos that shows the
same visual content, possibly filmed from different viewpoints and at different times. In practice, we
represent the portal by a single frame from each span, forming a set of visual transitions between videos.
Long videos, which may contain shots of several scenes, are masked during graph construction into a
series of shorter 30 second video clips to provide portal opportunities at regular intervals. This also
allows videos to match themselves at different times. In addition to portals, we also identify all frames
across all videos which broadly match portal frames. This produces clusters of frames around visual
targets, known as the support set, and enables 3D reconstruction of the portal geometry (Figure 4.2).

After a portal and its corresponding supporting set have been identified, the portal geometry is re-
constructed as a 3D model of the environment, see Figure 4.2. Video clips in temporal windows around

each portal are tracked to find camera poses, and these tracks are combined with the reconstructed geom-
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Figure 4.2: Overview of Videoscape computation: a portal (green rectangles) between two videos is established as
the best frame correspondence, and a 3D geometric model is reconstructed for each portal based on all frames from
the database in the support set of the portal. From this, a video transition can be generated as a 3D camera sweep

combining the two videos (e.g., Figure 4.1, right).

etry into one coordinate system combining recovered 3D geometry and camera poses. This provides the

ability to render dynamic 3D transitions around portals. Chapter 6 contains details of these operations.

Once the offline construction of the Videoscape has finished, it can be interactively navigated in our
Videoscape Explorer, explained in Chapter 7. This online component provides interfaces to navigate the

Videoscape by watching videos and rendering transitions between them at portals.

The explorer provides three modes. The interactive exploration mode allows casual exploration of
the database by playing one video and transitioning to other videos at portals. These are automatically
identified as they approach in time, and can be selected to initialize a transition. In the overview mode,
the Videoscape is visualized from the graph structure formed by the portals. If GPS data is available, the
graph can be embedded into a geographical map indicating the spatial arrangements of the Videoscape
(see Figure 4.1, left). A tour through the graph can be manually specified by selecting views from the
map, or by browsing edges as real-world travelled paths. These tours can be thought of as a geographical
summarization of the video collection. A third mode is available, in which images of desirable views
are presented to the system (personal photos or image from the Web). Our system matches these against
the Videoscape and generates a graph path which encompasses the views. Once the path is found, a
corresponding new video is assembled with transitions at portals. Other functions round out the interface,

such as label and image searches and fast path-based geographical browsing.
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4.4 Meeting the Recommendations

Section 3.4 identified 13 recommendations for a system which provides interfaces to video collections.

Videoscapes attempts to meet these recommendations:

1. Content Correspondence

(a)

(b)

(©)

More advanced correspondence methods are necessary to deal with hundreds of videos. We
implement a state-of-the-art coarse to fine matching strategy. It includes filtering for viable
frames to match, holistic matching with SIFT bag of words histograms, robust SIFT match-
ing with F-matrix consistency checks by RANSAC, and a final novel graph-based context

refinement post-process.

SIFT features and their analysis cannot necessarily find interesting content within a video
- content correspondence across videos should be investigated to improve this feature. We
identify portals between videos in a collection, where a portal may join many videos which
share content. We suggest that interesting content may be captured more frequently, and if
so, that portals naturally represent interesting content. The number of videos that a portal

joins can be used as a measure of interestingness for that content.

Time synchronization can be performed using audio tracks for only a subset of videos in the
collection. Where available, we exploit GPS and orientation sensor data to find viable videos

to later match by their audio tracks.

2. Transitions

(a)

(b)

(©)

(d)

A system to automatically generate VBR transitions should be included, even though they
may not be used all the time. We create a geometry reconstruction pipeline which exploits
the Videoscape structure by creating support sets. We allow a range of VBR transitions, and

experimentally test these for preference to define heuristics for appropriate transitions.

We should not assume that geometry recovery is possible to the extent that it covers all
parts of all videos in a collection, so fall-back transitions must exist. Our node and edge
scheme for portals and videos is specifically designed to overcome this problem. Where
reconstruction is possible, at portals, we allow video switching and provide 3D transitions.
Where reconstruction is unlikely in areas of poor coverage, we display only video. Instead of
attempting to reconstruct the entire geography, we maintain only the local linkage structure

present in the video collection.

Foreground segmentation is likely unachievable in the general video collection case. We
define explicit foreground handling as out of scope; however, in experiments, we find anec-
dotal evidence from participant comments that, for our case and with our data, this not a

major factor in transition preference.

We should not assume any additional input data to the system other than the video collection

itself. In our baseline system, we make no assumptions about data other than that which
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is in the video collection, and can provide automatic collection structuring and exploration
interfaces. However, with the proliferation of smartphones, we try to exploit additional sen-
sor data where possible to speed up portal finding and to provide novel interfaces for the

Videoscape.

(e) Transition comprehension may improve with fidelity. Many types of transitions may be ap-
propriate, even cuts. We implement and test a variety of different transitions, each either
providing a visual variation or improving visual fidelity. We experimentally verify this con-

jecture of McCurdy.
3. User Interfaces

(a) Presenting many video streams at once may be confusing. We create interfaces which do
not present multiple playing video streams at once to the user. However, we use scrubbable

thumbnails to provide access to every connected video frame when necessary.

(b) Map-based browsing is liked, is useful, and helps scene comprehension. Where possible,
when GPS sensor data is present, we provide various map-based video collection exploration
tools. These include overview mode browsing, inset mini-maps, geolocated portals, travelled

path lines, and view frusta.

(c) Pins are not a good way of abstracting the location and orientation of a video as it can
only either identify the position of the camera or the position of the content viewed. We
solve this problem with portal eye icons on the map-based interfaces, which abstract content
and not cameras. We separate the position and orientation of the camera (displayed as a
view frustum) from the map-based representation of the visual content of the portal. Portals,
representing shared visual content, are placed geographically above the relevant content, and
not at the camera position which views it. A separate exclusive thumbnail area shows the
specific visual content, and we couple this portal eye system with frusta and trails to provide

interface elements which encapsulate all spatio-temporal camera and content information.

(d) Any representation of video frames placed onto a map must be density aware. The
Videoscape graph provides us with a way of ordering the importance of portals, and our map-
based portal representation does not overwhelm the screen with thumbnails. We dynamically

add content where available, and maintain one dedicated screen area for thumbnails.

(e) Users most preferred watching summarizations of a tour video, so some equivalent function
forvideo collections may also be preferred. We include tours around the graph, which can be
thought of as geographic summarizations of the video collection. We experimentally verify
that these tours are better than existing summarization techniques in being more interesting,

giving greater spatial awareness, and providing a better sense of place.

Chapters 5, 6 and 7 explain in detail the implementation of each of the recommendations in these

three classes.
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4.5 Scope of the Solution

The Videoscapes system explicitly deals with sparse, unstructured video of places and the events within
those places. As such, there are entire classes of videos and video collections for which it makes much
less sense as an exploration system and for which our system is untested. While Web video collections
do contain the kinds of video that our system needs as input, these videos are difficult to find as current
online video collection search tools are keyword based and not content based. We conducted preliminary
experiments to search for videos of a place with the term “London Big Ben”, on both YouTube and
Vimeo. Sampling 100 videos from each, we found very low signal-to-noise ratios of approximately
1:10 for appropriate videos of London, i.e., not video clips from television news or at parties or indoors.
This contrasts with Flickr searches for appropriate images for geometry reconstruction, where the signal
to noise ratio is approximately 1:1.2. Still, there are videos very much like ours in online collections;
unfortunately, they are harder to find than in image collections. Our work does not attempt to solve the
problem of sorting and categorizing vast online video collections. This is a complicated and challenging
problem, which, once solved, could create input sets for our exploration system.

We also do not address the issue of scale. Web video collections are staggeringly large. Our system
can only preprocess hundreds of videos within a reasonable amount of time (a few days, see Section
5.8.2). This is clearly many orders of magnitude away from handling real-world databases. However,
our system uses similar approaches and algorithms to existing state-of-the-art works [ASST09, FGG ' 10]
and so performs approximately comparably (< 5x) given leeway for the focus on speed and engineering
efforts of these works. Most of our pipeline is parallelized, and so our approach would apply well to

cloud computing environments.

4.6 Experimental Databases

During the project we captured various databases to test and demonstrate our method. Here, we provide
capture and basic processing information for each database. Our system takes a database of videos
of a place as input. To capture our databases, we distributed video cameras to several people and let
them move around the place capturing video. We also mounted video cameras to bicycles. The video
collections include different conditions such as a wide variety of spatial locations, changes of date, time,
weather, camera, and foreground objects.

In Chapter 1, we use the motivating example of a theme park, where the video collection contains
both professionally shot video and amateur video from park visitors. While this would be an excellent

test of our system, unfortunately for logistical reasons we did not obtain such a database.

4.6.1 London

Our first database comprises 196 videos taken around four locations in London: Big Ben and the London
Eye, the Tate Modern gallery and St Paul’s Cathedral, the Tower of London and Tower Bridge, and
Museum Street and the Albert Hall. The footage also includes general street footage within each specific
area, and two 30 minute walking videos joining a) St Paul’s Cathedral and the Tower of London, and b)

the Tate Modern gallery and Tower Bridge. Individual videos feature a variety of motions, and include



4.7. Conclusion 52

small casual movement from one location to another and pans and zooms to take in views. The videos
vary in location, date and time, viewpoint, and the presence and variety of foreground objects. The videos
in this database exhibit stereotypical camera shake as they were captured hand-held, and this shake is
especially noticeable when the camera operator is walking. All videos were captured asynchronously
with one camera (Sanyo FH1) at a resolution of 1920 x 1080, and with heterogeneous framerates of

either 30Hz progressive, or 60Hz progressive, or 60Hz interlaced.

4.6.2 South Bank

In the second database, we employed steadycams to reduce locomotion-caused camera shake, though this
is not a functional requirement and only improves the presentation of the database. Where employed, our
sensor data was captured with smartphones strapped to the cameras, but all video and optional sensor data
could be captured with just one smartphone. We anticipate that cameras in the near future will integrate
the required MEMS parts to similarly optionally provide orientation data to our system. This data was
captured contemporaneously between four operators over an hour, with no explicit synchronization and

with heterogeneous cameras, resolutions, and framerates.

4.6.3 Campus Bike

Our third database simulates a sports event. Two riders travel around a course with bike-mounted cam-
eras, while three spectators capture their actions. The spectators move around the course to different
locations and orientations, taking in the riders as they pass along the track. Here, the cameras were also

heterogeneous and recording at different resolutions and framerates.

4.7 Conclusion

This chapter provides a high-level overview of our Videoscapes system. We defined key system terms
and introduced our node/edge portal/video structure 4.2, explained the offline preprocessing and online
interface components of our system in Section 4.3, and declared the broad limitations of our system in
Section 4.5. Finally, we reviewed the video collections created for testing our system (Section 4.6).

The next three chapters will describe the three significant components of our system: content cor-
respondence as portal finding in Chapter 5, creating, rendering, and testing transitions in Chapter 6, and

designing and testing interfaces to navigate the Videoscape graph in Chapter 7.
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Chapter 5

Identifying Portals

5.1 Introduction

Finding structures or similar contents within data collections is a problem relevant to many disciplines of
computer science. In computer vision, this task often manifests as image search, where descriptive image
features are computed for each image in a database and matched against features in a target image (see
[LSDJ06, DJLWOS] for reviews). More specifically, recent work has tried to cluster images within large
image collections to reconstruct geometry of famous places to allow free or guided navigation of image
collections [SSS06, GSCT07, SGSS08, SSS08, ASS™09]. With collections specifically captured for this
purpose, it is possible to reconstruct sparse representations of city streets or districts [FCSS10, FPL*10]
so long as they uniformly conform to well-textured and non-specular assumptions.

It might seem that video collections are a simple extension of image collections; however, there
are important differences which make difficult the application of existing techniques for finding similar
content, for reconstructing geometry, and for providing access to all content within a video collection.
For instance, a naive application of Frahm et al. [FGG T 10] on a sparse casually captured video collection
will be very unlikely to yield a full 3D reconstruction of the depicted environment: the video data simply
does not contain enough example shots with sufficient baselines to ensure geometric coverage between
landmark buildings. In contrast to previous systems, which attempt to reconstruct a dense geometry for
a confined location, our approach aims to recover the local linkage structure of videos covering a much
larger area, while reconstructing scene and camera geometry only for specific locations at portals.

Other works in structuring media collections improve the accessibility of image collections by ex-
ploiting novel connectivity algorithms on a graph of images. Recent approaches also begin with feature-
based matching, but then later find favourite views of an object or landmark in a collection [WL11],
improve accuracy via geometrical collocation [PSZ11], or improve graph density (the number of links
between images) via connectivity analysis [HGO™10]. Again, while some of our problems are parallel
to the ones solved in these works, none are directly applicable. Our primary goal is to maximize the pre-
cision of found portals, as we do not want to incorrectly join unrelated content. This directly contrasts
with some existing work, which attempts to maximize connectivity [HGO™"10]. We wish portal finding
to be efficient and applicable to as large a video collection as possible [WL11]. Our connectivity analysis

should not be restricted to only a handful of landmarks as a video collection may contain many hundreds
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or thousands of content similarities. This is in contrast with some current works in the literature which
perform complex analysis on only tens of landmarks [PSZ11].

In this chapter, we detail how we find portals within a video collection. Even a small video col-
lection will have millions of frames, and so we must find portals in a computationally-feasible way. We

have two goals:

1. To identify candidate portals and to examine each pair of videos to find the best frames to smoothly

move between them.

2. To find for each portal the support set to reconstruct a geometric representation of the content with

which to render transitions.

The identification of frame connections is performed in four phases, where each phase reduces the set of

candidate portal video frames in the collection:
1. In the filtering phase, a set of representative frames Z = {1, ..., I,,} is extracted (Section 5.2).
2. In the holistic matching phase, we quickly generates a set of candidate matches on Z (Section 5.3).

3. In the feature matching phase, these candidates are verified using a more costly but more robust

local matching scheme (Section 5.3).

4. Inthe context refinement phase, the overall connectivity of the resulting graph structure is analysed

and spurious matches are removed (Section 5.4).

From the graph, we select the most appropriate portals (Section 5.5) and finally, for each portal, deduce
the support set. These portals, the linkage structure which they form, and their support sets are all later
used to recover geometry and render transitions between video clips (Chapter 6) and to provide novel
video collection interfaces (Chapter 7).

The work in this chapter was completed in close collaboration with Kwang In Kim of the Max-
Planck-Institut fiir Informatik. Most of the ideas in this chapter were discussed and devised by both
the candidate and the collaborator, with some exceptions. Specifically, Section 5.2 is the work of the
candidate, Section 5.3 is joint work, Section 5.4 is the work of Kwang In Kim, is included for complete-
ness, and as such should not be assessed, Section 5.5 is joint work, and Section 5.6 is the work of the

candidate.

5.2 Filtering

Naively matching all video frames in a database against each other is computationally prohibitive. As
such, a method which can quickly find only a small set of potential matches is essential. Our goal
in the filtering phase is to remove the redundancy present across video frames and produce a set of
frames which samples all visual content in the video collection, thereby reducing the visual matching
computation time.

One approach to this is to pick frames from videos at regular time intervals. However, this often

finds too many similar candidates from parts of videos where the camera is largely still, and it may miss
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content during fast camera motion. An ideal system would select just enough frames per video such that
all visual content were represented and all possible transitions were still found. In this, we assume that
repeated content which is separated by other content within the same video still needs to be represented,
e.g., a pan left and pan back right to the same content does not count as repeated content as we assume
that the camera operator intentionally returned to the same content for a scene- or shot-specific reason.
We implement two approaches to approximately select these frames, depending on which data is

available:

1. Optical flow analysis [Far03, EDM™08] provides a good indication of the camera motion from
just the video frames, and allows us to find appropriate video frames that are representative of
the visual content. We compute the frame-to-frame mean flow, accumulate, and select one frame
every time the cumulative flow in z (or y) exceeds 25% of the width (or height) of the video; that
is, whenever the scene has moved 25% of a frame. We perform this on a frame subsampled to one

quarter area for speed.

2. Orientation sensor data (odometry) can accomplish much of the same task as optical flow (visual
odometry). For instance, by integrating data from MEMS accelerometer and gyroscope sensors
as commonly found in mobile devices and synchronizing this to the video, appropriate frame
selection becomes trivial by accumulating angular change and applying the same 25% heuristic.

This overcomes the computational cost of visual odometry but adds a hardware cost.

The 25% heuristic is chosen because, in the difficult case of trying to match content from two videos
with contrasting pans, it still leaves a 50% overlap in both video frames from which to accurately match
content later on in the algorithm. In the flow case, pure zooms can be detected by contrasting the zero
average flow direction with the non-zero average flow magnitude, and here a threshold must be picked.
Further, this also detects translations into the scene. Zooms combined with camera rotations are detected
by the 25% heuristic. In the sensor case, zooms cannot be detected, and here we await camera focal
length metadata to be embedded into videos.

With GPS and orientation sensor data provided, we can further cull candidate frames that are un-
likely to provide matches. For example, if we consider camera frusta, frames that have physically-close
locations and opposite orientation vectors will never produce a geometric match. However, even though
we perform sensor fusion with a complementary filter which makes individual position and orientation
readings more robust, we must still cull with respect to the sensor error as sensor data is often unreliable.
Sensor filtering allows us to process databases approximately 4 x larger for the same computational cost

as processing without sensor filtering.

5.2.1 Discussion

Filtering reduces unnecessary duplication in still and slow rotating camera shots. The reduction in the
number of frames over regular sampling is content dependent, but in our London database filtering selects
approximately 30% fewer frames compared to sampling every 50th frame (a moderate trade-off between

retaining content and the number of frames). This leads to a 50% reduction in computation time in
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subsequent portal-finding stages.

However, do the frames represent the same content? Testing this comprehensively would require
comparing thousands of video frames; instead, we perform a smaller subjective experiment on a subset
of frames. For a random selection of frames of the same scene from 10 different videos, we compared
the number of frames representing each scene for the regular and the optical flow heuristic sampling
strategies. On average, for scene overlaps that we judged to be visually equal, the optical flow produces
5 frames, and regular sampling produces 7.5 frames per scene. This indicates that flow filtering extracts
frames more economically while maintaining a similar scene content sampling. The 25% sampling
parameter could be optimized for each video to minimize this number, but in general it provides sufficient
overlap for later visual correspondence-finding stages of the portal finding strategy while significantly
reducing computational cost. The quality of matching in later stages is not affected by the filtering as
we set our heuristic to conservatively keep examples of all visual content. Further, for fast pans, regular
sampling will undersample the content and our approach will not.

Table 5.1 states the results of filtering for each of our databases. Filtering is not guaranteed to reduce
the number of frames over regular sampling as, for example, fast panning will produce more frames under
motion analysis to represent all present content. However, in all of our databases it produces at least a
modest reduction. At what point does the computational overhead of filtering become pointless? Sensor
data filtering takes a very short amount of time, e.g., 7 seconds on our South Bank database, and so is
almost always worth completing computationally — only toy databases of a handful of images would
not benefit. Flow analysis is computationally more expensive: fast optical flow can compute at 30Hz on
modern GPUs [EDM T 08], e.g., approximately 3 hours on our South Bank database.

At what number of input frames in the video collection x does flow analysis become cost effective?

The number of comparisons made ¢, in an n-to-n matching of portal candidates in the regular sampling

=1 (M) , (5.1)

case is:

2 502

where x is the input number of frames in all videos. We only need to compute matches in the upper
triangular part of the n-to-n matrix, hence the division by 2, and the —1 removes the diagonal terms in
the match matrix. With fast GPU-based feature matching [Wu07, FGG™*10], currently in the best case
we can compute roughly 10 pairwise matches per second [ASS*09], meaning that the time in seconds

t, required to compute these matches is:

1 z(x —1)
tr2><10< 502 ) 5-2)

Let us now assume a 74% reduction in frames over regular sampling. This is the average reduction
seen in Table 5.1 for the flow-filtered databases. In this next equation, here we must also include the time

for flow computation, which is at 30Hz. The time in seconds ¢; then becomes:

1 z(x —1) x
ty = —. 53
I 7 2x10 (502><1.74>+30 (5-3)

If we equate Equations 5.2 and 5.3, flow-based sampling starts to become computationally worth-

while for video collections with approximately 2500 frames in total, or roughly 1.4 minutes of footage
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Number of frames
Database Filter method

Regularly sampled  Filtered Total

London 4,893 3,508 318,734 Optical flow
— Big Ben & London Eye 1,739 667 89,774  Optical flow
— Museum Street & Albert Hall 1,832 1,756 93,330 Optical flow
— Tate Modern & St Paul’s 678 551 69,478  Optical flow
— Tower of London & Bridge 644 534 66,152  Optical flow
British Museum 1,105 417 55,914 Optical flow
Gordon Square 816 400 41,006  Optical flow
South Bank 6,826 2,651 341,550 Sensor data
Campus Bike 5,938 3,771 297,064 Sensor data

Table 5.1: A comparison of the number of regularly sampled frames (at 50 frame intervals) versus the number of

filtered frames.

at 30fps. These are only approximate calculations and do not include data transfer times, but it is a good
indicator that it is almost always advisable to filter beforehand. Additionally, as sensor-based filtering
takes only a few seconds to compute as approximate position and orientation data are provided for every
frame of video, this filtering is practically always worth performing.

This 74% average reduction in portal candidate frames is only approximate as all motion analysis
is content dependent. We can see this in the marked difference in improvement between subsets of our
London database, where the Big Ben & London Eye database has many more still shots than the Museum

Street & Albert Hall database, and so produces relatively fewer frames with filtering.

5.3 Holistic Matching and Feature Matching

In the holistic matching phase, we quickly generates a set of candidate frame matches from the fil-
tered frames. The global structural similarity of frames is examined based on spatial pyramid match-
ing [LSPO6]. Here, we use bag-of-visual-word-type histograms of SIFT features [CDF™04, LM01] with
a standard set of parameters: the number of pyramid levels and the size of codebook were fixed at 3 and
200, respectively. The resulting matching score between each pair of frames is compared with a thresh-
old T and pairs with distances higher than T are discarded (17 = 2.2, see Section 5.8.2). Performing
holistic matching before feature matching has the advantage of reducing the overall time complexity of
portal finding, while not severely degrading matching results [HGO™ 10, FPL*10, FGGT10].

The output from the holistic matching phase is a set of candidate matches (i.e., pairs of frames),
some of which may be incorrect. We improve results through feature matching, and match local frame
context with the SIFT feature detector and descriptor. After running SIFT, we use RANSAC [FB81] to
estimate matches that are most consistent according to the fundamental matrix [HZ04], similar to other

related methods.
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Figure 5.1: An example of a mistakenly found portal after the holistic and feature matching phases, with 20 incorrect
feature correspondences. Such errors are removed in the context refinement phase. The green lines connecting

orange circles and red crosses show the feature correspondences.

The RANSAC algorithm, as well as other approaches for correspondence finding [LHO5], has been
extensively studied in object detection and recognition research and also in related work on photo col-
lections [SSS06]. However, in general and in our case, it is very difficult to achieve 100% precision in

matching images from unconstrained environments.

5.4 Context Refinement

The correspondences output from the feature matching stage may still include some false positive
matches. Figure 5.1 shows an incorrect match example and demonstrates that these kinds of matches
are hard to remove using only the result of pairwise feature matching. When simultaneously examining
more than two pairs of frames in preliminary experiments, we observed that correct matches are more
consistent with other correct matches than with incorrect matches. For example, when frames I; and
I, correctly match, and frames I» and I3 correctly match, then it is very likely that I; also matches I5.
However, for incorrect matches this is different: if I; and I5 do not match, and /> and I3 do not match,
then [; and I3 may still match. Even though incorrect matches may still be correlated, it is less likely
that incorrect matches form triangle equalities. We exploit this context information and perform a novel
graph-based match refinement to prune false positives.

This context information can be exploited systematically by applying graph partitioning on the
connectivity graph of the matching frames. We first build a graph G(F, ) representing all pairwise
matches, where nodes F are frames and edges in £ connect matching frames. Specifically, an edge
between two frames I and J is added to £ if holistic matching considers them a valid match. In this
case, I is called a neighbour of J. This graph is different from the Videoscape graph which captures the
portal linkage structure (Section 4.2).

Each edge holds a real-valued metric describing how well features of I and J match:

__2AM(L,J)|
D= ST sl o

where S(I) is the set of SIFT feature descriptors calculated from a frame I and M(1, J) is the set of

feature descriptor matches for frames I and J. For pairs (I, J) filtered after holistic matching, we simply

set k(I, J) = 0 instead of performing feature matching. To ensure that the numbers of SIFT descriptors
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extracted from any pair of frames (/1 and I5) are comparable, all frames are scaled such that their heights
are identical (480 pixels). Intuitively, k(-,-) : F x F + [0, 1] is close to 1 when two input frames contain
common features and are similar.

Given this metric, we construct the graph Laplacian L = D — K, with [K(; j)]n.n = k(I;, I;) and
the diagonal matrix D; = Z;’Zl K jy. We perform spectral clustering [Von07] by solving the eigen-
value problem on L. The first m eigenvectors that correspond to eigenvalues > T, where 77 = 0.1, are
arranged in a matrix G' and we perform k-means clustering on the rows of G. Then, we remove con-
nections between pairs of frames (nodes) that span different clusters. This effectively removes incorrect
matches, such as in Figure 5.1, since, intuitively speaking, context-consistent matches will be assigned
to the same cluster.

Our graph construction is similar to Heath et al. [HGO™"10] who used it for the opposite goal
of increasing connectivity between matched photographs. Instead, our approach reduces connectivity
between clusters by finding incorrect matches. For comparison, 1) [HGO™10] uses a binary metric
for the construction of the graph Laplacian (1 if a keypoint match is successful, 0 otherwise) while we
use a more informative real valued metric (Equation 5.4); 2) in [HGO*10], the purpose of building a
graph Laplacian L' is to augment connections, requiring iteration between updating L’ and calculating

the corresponding eigenvectors. Our algorithm does not need to iterate.

5.4.1 Discussion

A naive context-based filtering approach would assign a local context-dependent confidence to an edge
(I, J) and remove it when the confidence is lower than a threshold. For instance, we could define the
confidence of (I, J) as I, the degree of overlap of the neighbourhoods Ng(I) and Ng(J) of I and J,

respectively:

 We) N NG ()
NG (1) UNG (7))

For instance, if I is neighbouring J and K, it is likely that J and K are each other neighbours

T(1,.]) (5.5)

(see Figure 5.2, left). While this approach may be reasonable when the neighbours of I and .J consist
of frames in a spatially localized scene, it may mistakenly disconnect I and J if the camera viewpoints
are starkly different. For example, a camera operator walks along a path and takes a panning shot from
location A, through to location B, and finally to location C. The footage taken from A and B may contain
the same landmark. Now consider location C. The footage from B and C overlaps while the footage from
A and C does not (see Figure 5.2, right). In this case, A and B should not be disconnected just because
the subgraph composed of A, B, and C shows low connectivity. The same reasoning continues to cases
with more than three nodes.

This specific example can be dealt with by adopting a small threshold value for T'(I, J). However,
this may leave incorrect matches in high-density regions. Furthermore, for edges joining nodes in regions
with the same density, we could still distinguish correct matches from incorrect ones depending on how
these edges are geometrically collocated. In our A, B, C example, the edges joining the nodes are aligned

with the same orientation. This orientation consistency and the variations in local density can be used



5.4. Context Refinement 60

A ) -
oy [A] C|

Figure 5.2: An example of a hypothetical local connectivity-based confidence assignment (not used in the current

~ <

system). The diagram on the left shows the subgraph of G consisting of neighbours of I and J respectively. Solid
lines correspond to existing edges, while dashed lines show missing edges which would have supported the edge

(I,J). The corresponding confidence value is %. The diagram on the right shows a case where this confidence

assignment would not be applicable.

as clues for verifying given connections. To better illustrate this property, let’s assume that frames are
embedded in a vector space X’ which has a metric structure and an underlying probability distribution P.
Suppose that distribution P is elongated along a specific axis in X. In this case, an edge parallel to that
axis should be more likely to be a correct match than ones oriented orthogonally (Figure 5.3). In general,
the lengths and orientations of edges do not have to be directly related to real geographical locations and
camera orientations as in our example in Figure 5.2.

Given this context, we motivate the use of spectral clustering as follows: given the semi-norm of a
vector f € R™, whose elements represent the assignment of a cluster index (as a real value, before the

quantization by k-means) to each data point:
Ifllz - = fTLf

n 5.6
= 2 3 R )~ ) o
i,j=1

This norm penalizes the first order variation of f across the set of frames, weighted by k. If we assume
that k& is inversely proportional to a distance in a space embedding, the frames F, ||- ||z, can be understood
as a measure of the first order variation weighted by the density of F in that space. Then, minimizing
|l £l tends to place two points I and .J in the same cluster (i.e., | f;— f.s| ~ 0) if there is at least one high-
density path connecting them (e.g., nodes lying in the first (upper) cluster in Figure 5.3). Furthermore,
when the number of images n — oo, L converges to the Laplace-Beltrami operator on a compact
manifold M in which the data resides [Von07], which is the diffusion generator on M. The previously
mentioned orientation consistency can be understood in the context of diffusion flow. The corresponding
smallest eigenvectors span a subspace of vectors which represent the least penalization by || - || ..

In general, the function £ is not positive definite and does not lead to a distance measure. However,
the elements of the matrix K are positive and, empirically, the corresponding diagonal elements mostly
dominate (i.e., Y, K ;) > 2), 2 K(ij)). Accordingly, all K’s in our experiments were positive
definite. When this is not the case, we could instead take its exponential ePE — limy, 0o (I + BTK)”

with a positive constant 3, which is always positive definite (see [KL02] for details).
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Figure 5.3: Example graphical embedding of frames and
their connections. Even though (I,J) and (I, K) show

I
b O . J the same local connectivity, (I,J) is more likely to be
a correct match than (I, K) since the former is in ac-

cordance with the flow direction (elongatedness) of the

distribution while the latter is not. The underlying distri-
butions P (displayed as ellipses) are not known and we

must estimate them from the video frames.

The clusters from spectral clustering cannot be used by themselves to identify portals or support
sets of frames matching portals: By design, a cluster contains spatially distinct data points. This is not
desirable for identifying portals or for identifying sets of appropriate frames to use for the corresponding
portal geometry reconstruction. In our A, B, C example, the frames of scene A might not be necessary
for the reconstruction of scene C (Figure 5.2, right), but they might be in the same cluster. Sections 5.5

and 5.5.1 address portal and support set selection.

5.5 Portal Selection

The matching and refinement phases may produce multiple matching portal frames (1;, I;) between two
videos. If the database contains many videos, the resulting quantity of matches makes visualizing and
exploring the graph structure very difficult (see Section 7.2.2 for more discussion). We side-step this
problem by retaining only the best available portals between a pair of video clips. This might seem to be
too few portals joining videos as each video may be long and take in many different scenes. However,
we mask each input video into 30 second clips so that there will be portals at approximately regular
intervals in time in each video.

A good portal should have many visual feature matches and allow for a transition which maintains
spatial awareness between videos. This is more likely for frame pairs shot from similar camera views,
i.e., when there are only small image-space displacements between matched features. To this end, we
enhance the metric from Equation 5.4 to favour such small displacements and define the best portal as

the frame pair (I;, I;) that maximizes the following score:

(max(D(Ii)7 D(1y)) — %)

max(D(1;), D(1;)) ’

QI 1;) = ~vk(1;, I;) + (5.7)

where k is from Equation 5.4, D(-) is the diagonal size of a frame, max(D(I;), D(I;)) is the largest
possible displacement between two corresponding features, M (-, -) is the set of matching features, M is
a matrix whose rows correspond to feature displacement vectors of verified matches, || - || is the Frobe-
nius norm, and 7y is the ratio of the standard deviations of the second and first summands (excluding ),
and balances the contributions of the two terms. The intuition behind this score is that, for a given fixed
number of matches (the first summand), the score should be inversely proportional to the mean norm of

matching vectors, i.e., the displacements between matching features in two frames should be small. This
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Video 73: Video 7:
Portal 1 Portal 3 Portal 1 Portal 2 Portal 3

Video 3

Video 1

Video 2

Figure 5.4: Examples of portal frame pairs: the first row shows portal frames extracted from two different videos in
the database (7 and 73), while the second row shows corresponding matching portal frames from other videos. The

number below each frame shows the index of the source video in the database.

satisfies the criterion that any video transition through this portal should have small displacements to be
visually more plausible. Figure 5.4 shows examples of identified portals (see Section 5.8.2 for experi-
mental setup details). Videos with no portals are not included in the Videoscape, though these could be
included for completeness as separate graphs with start- and end-frame portals and one edge.

In practice, Equation 5.7 finds portals that are the most-similar camera poses between candidate
frames from two video clips. On average, these portals cover view changes of approximately 35°, but this
is very content dependent. Some portals have no angular baseline, others have only a zoom difference,
and many have approximately 10° or less baselines. As we always pick the best matching portal between
two video clips, there are extreme cases where the match is under a wide baseline of over 60°. The

performance of portal finding is evaluated in Section 5.8.

5.5.1 Support Sets

We define a support set of frames for each portal to be used for geometry reconstruction. The support
set for a portal node contains all portal frames from neighbouring nodes in the Videoscapes graph which
also belong to the same spectral cluster as the portal, as discovered during context refinement (Section
5.4). For our London database, the average size of portal support sets is 20 frames.

Support sets can be augmented by including neighbours of neighbours. Recursively extending the
support set in this way tends to fill in reconstruction detail for objects surrounding the portal landmark.
For instance, if a portal showed different views of Big Ben, then recursively extending the support set
would add more detail to the final reconstruction of the neighbouring Palace of Westminster building
simply because videos which typically cover this popular area are highly interconnected. This helps to
cover more of the virtual view with recovered geometry in the final rendering. Including neighbourhood
support sets two edges away from a portal in the graph of support set frames increased the average size
to 45 after removing duplicates, while including neighbourhood support sets up to three edges away

increased it to 70.
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The larger the support set used for geometry reconstruction, the longer the process; however, in our
experience, often the geometry reconstruction improves as more frames are added. Additional frames
which are very similar in pose do not improve the reconstructions. In our case, due to our filtering steps
in Section 5.2, very similar frames are removed and so usually additional frames added in neighbour-
hood augmentations are of different poses. Including all neighbourhoods recursively does not produce
a complete geometry reconstruction of the video database due to varying video coverage. Instead, the
graph linkage structure maintains global navigability. We choose to use support sets extended by two
neighbourhoods, as this was a good compromise between computation speed and reconstruction extent

for our London database.

5.6 Synchronization

5.6.1 Sensor Data

For our London database (Section 4.6), we captured GPS position data with a mobile phone along with
video from a camcorder. The internal clock of the video camera was manually synchronized to GPS
time before capture. This produced sensor synchronization to within a second which, when coupled
with the GPS sensor update rate of 1Hz, confers to a maximum two-second synchronization error. This
database was captured on foot: it is unlikely for the position data to be significantly in error due to
synchronization errors because it is hard to move very far in two seconds on foot. Of course, GPS is not
an infallible positioning system, especially on a mobile phone: this position data is only broadly correct
being accurate to 5-20 metres, and might give inaccurate readings in areas with many tall buildings. We
do not attempt to tackle these problems; in principle, the Videoscape graph could be exploited at nodes to
jointly estimate the geographical camera pose and 3D structure, rather than just the local spatial camera

pose and 3D structure of the videos, but we leave this for future work.

For our South Bank and Campus Bike databases, we additionally captured orientation sensor data
from gyroscope and accelerometer MEMS chips on a mobile phone. This data is harder to synchronize
because rotation has a lower tolerance for error than position (a human can feasibly rotate 360° with
a camera in one second), and so frame-exact synchronization is required. We hand-synchronized po-
sition/orientation data to video frames: position/orientation data is shown on a map side-by-side with
the video, and sliders allow changing the time offset between video and sensor data. Synchronization
is most easily achieved by matching the zero-velocity points of rotation arcs (similar to the equilibrium
position of a pendulum). We expect that, in the future, this synchronization will be unnecessary as either
a) MEMS circuits will be integrated into video cameras and position/orientation data will be provided
as metadata to videos (or existing sensor circuitry currently used for optical stabilization will gain con-
sumer/developer interfaces), or b) mobile phone video cameras will improve. Recent advances by Nokia
with their PureView cameras [ADS12] show that b) is possible, and over the next 5 years this technol-
ogy is likely to become commonplace and make mobile phones both capable video capture devices and

capable sensor platforms.

A frame-exact synchronization of mobile phone sensor platform and video camera could be
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achieved using audio. While no software currently exists on mobile marketplaces to do this (and we
did not write one), it would be possible for the phone to generate a loud beep at a certain known time,
which is then picked up by the microphone on the video camera. This would provide a short (frame-
accurate) reference for synchronization. Alternatively, exact time from GPS could be recorded for every
video frame. As this is accurate to 10 nanoseconds [Phy], it should be possible to perform frame-exact
video synchronization. For our application, the device which captured video was not the device which

received GPS signals, and so this synchronization was only loose.

5.6.2 Time

To provide temporal navigation, we perform frame-exact time synchronization between videos in the
collection. We group video candidates by timestamp and GPS location if available, and try to synchro-
nize their audio tracks similar to Kennedy et al. [KN09] and Hasler et al. [HRT"09] using off-the-shelf
software [Sinl1]. Videos which are positively matched by their audio tracks are aligned accurately to
a global clock (defined from one video at random); hence, portals between these videos create spatial
transitions where time does not change (similar to those from Ballan et al. [BBPP10]). Videos which are
not matched by their audio tracks can only be aligned loosely from their timestamps, and hence create
spatio-temporal transitions. This information will be used later on to optionally enforce temporal coher-
ence among generated tours and to indicate spatial-only and spatio-temporal transition possibilities to

the user (Section 7.2.1).

5.7 Pipeline

The pipeline for portal identification, with optional stages included, is described in Algorithm 1.

5.8 Experiment: Context Refinement and Portal Identification

We captured many databases to demonstrate our method (see Section 4.6); however, here, we provide
a detailed analysis of portal identification on only the London database. The processes used for each
database are virtually identical, with all parameters kept the same and the only difference being which

filtering method is used.

5.8.1 Context Refinement

We investigated the performance of the graph Laplacian-based connectivity analysis method by compar-
ing it to the local analysis approach described in Section 5.4.1. For this algorithm, we randomly sampled
100,000 edges, measured their scores, and removed them when the scores were smaller than a threshold.
The threshold was set at 0.4 to result in recalls comparable with our proposed method. Since the order of
visiting edges can affect the results, we performed the same experiment 20 times and averaged the error
rates. Table 5.2 shows the results. The precision of local analysis shows an improvement over the results
obtained without any connectivity analysis. However, this is still a lower precision and recall than that

of our Laplacian-based graph method.
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Algorithm 1: Pipeline for portal identification including optional stages and default values for

our databases.

Data: A video collection.

Result: A Videoscape graph (Section 4.2).

foreach video do

Synchronize sensor data by Section 5.6.1;

Time synchronize by Section 5.6.2;

Mask video into 30s clips;

Filter video frames (25% frame diff.) to find portal candidates with flow by Section 5.2;

If present filter with sensor data;

foreach pair of portal candidates do

Perform holistic matching with SIFT bag of words, Ty = 2.2, by Section 5.3;

foreach pair of holistic matched candidates do

Perform feature matching with RANSAC/F-matrix by Section 5.3;

Perform context refinement, 77 = 0.1 by Section 5.4;
Perform portal selection for n-to-n clips by Section 5.5;
foreach portal do

L Compute supporting set by Section 5.5.1;
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Phase Recall Precision
Spectral analysis 0.53 0.98
Local analysis 0.51 0.95

No connectivity analysis ~ 0.58 0.92

Table 5.2: Performance of spectral and local connectivity analyses. ‘No connectivity analysis’ corresponds to just
the holistic and feature matching phases (see Table 5.3). Our spectral analysis reduces the portal match errors seen

by users from 1 in 11 to 1 in 50.

5.8.2 Portal Identification

To gain insight into the performance of portal identification, we measured the precision and recall for a
random subset of our London database. A comprehensive evaluation of an entire database is infeasible
since it requires manually labelling O(n?) pairs of images.

Precision was measured from all identified portals connecting to 30 randomly selected videos. The
corresponding frame matches were visually inspected and portals were labelled as ‘correct’” when match-
ing frames represented the same scene. It is not always possible to deterministically evaluate the correct-
ness of a match, for instance, when one image contains a wide view of Big Ben while the corresponding
matched image contains only a small portion of it. Accordingly, we introduced an undetermined case
which is not counted during evaluation, though in the described instance it is arguable whether it re-
ally matters at all — visually, it is still a good match, even if it may lead to inconsistent virtual camera
motions during transitions (or in other cases, e.g., where frames containing a repeatingly symmetrical
terrace-like building are confused, the virtual camera motion could be a pan that is too short/long).

To calculate recall, 435 randomly selected pairs of video clips were visually inspected to see if
their scene content overlapped. Again, ground truth portals were identified as ‘found’ when there was a
corresponding automatically identified portal. Table 5.3 proves the importance of each phase of portal
finding (the threshold for the holistic phase was fixed to Ty = 2.2, see Section 5.3). Using only holistic
matching, a high recall can be reached but precision is low. When using holistic matching only, we
cannot use the score from Equation 5.7 for choosing the best frames because it expects fundamental-
matrix verified feature matches to compute feature displacements; instead, the pyramid matching score
is used. Adding feature matching leads to a drastic increase in precision (holistic & feature matching 1).
Finally, all phases together (77 = 0.1) yields a precision of 98% and a recall rate of 53%. Even though
combining all steps leads to a slight reduction in recall, this serves our purpose as our objective is to
minimize false positives.

For comparison, it is possible to achieve the same precision with feature matching (holistic & feature
matching 2) by simply thresholding the number of key correspondences. However, this lowers the recall
considerably, indicating the reduction of the size of the support sets and hence reducing the ability to
reconstruct 3D models needed for some transitions.

All these parameters can influence the accuracy and computation time of portal identification. How-
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Phase Recall Precision
Holistic matching only 0.84 0.14
Holistic & feature matching 1 0.58 0.92
Holistic & feature matching 2 0.42 0.98

All (holistic & features & context)  0.53 0.98

Table 5.3: Performance of portal identification.

ever, for a fixed n, Ty can roughly be regarded as both an accuracy control and a computation time
control (with these two properties being inversely proportional), while 77 can be regarded as a control to
trade between precision and recall.

Reaching 100% precision with automatic methods is nearly impossible and even analysing context
information through graph-based refinement cannot completely rule out these errors. For these rare
cases, the virtual tourist can manually flag the remaining incorrect portals in the interactive viewer.
False matches due to symmetric buildings could be further disambiguated with recent advances in vision
[ZKP10, HS12], but even here there will still be errors.

On our London database of 196 videos, all portal identification steps took approximately four days
on one Xeon X5560 2.66GHz (using one core). Most of this time is spent in accurate feature matching,
and spectral refinement takes only a few minutes. Using filtering instead of regular sampling saves two
days of computation. 232 portals were found. Except for the first phase, specifically the codebook

generation, the off-line procedure could be executed in parallel.

5.9 Conclusion

The chapter describes the stages necessary to transform a collection of videos into a Videoscape graph.
First, we filter video frames to isolate individual camera motions, usually pans and still sections. From
this, we ensure that we sample all video content as sparsely as necessary, and so produce a set of can-
didate portals. Next, we perform a holistic matching upon these candidates to further reduce potential
content matches, before a more accurate (and more computationally expensive) geometric feature match.
This stage still leaves errors, so we develop a graph-based context refinement method to remove incor-
rect matches. Finally, we select Videoscape portal frames by defining a joint context-and-correspondence
score. We experimentally assess our approach against existing methods and find that we achieve high
precision with better rates of recall than existing methods.

With the Videoscape graph defined, we can now walk the graph and cut between videos that join at
portals. However, the portal frames are still sufficiently different that there is a harsh discontinuity when
switching clips. The next chapter attempts to remove this harsh switch by using vision and graphics

techniques to render intermediate video transitions.
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Chapter 6

Video Transitions

6.1 Introduction

For over a hundred years audiences watching movies have become familiar with the effects of placing
video clips in sequence. The switch between clips is called a transition and, while this is most commonly
an instant transition or cut, various transitions exist to represent information and create effects in the mind
of the viewer. Transitions were an artistic introduction which allowed movies to transcend the restrictions
of time and location placed upon theatre (as well as, though unimportantly, the physical restrictions of
the amount of film in a reel). Since then, advances in physical and digital visual effects have given
movie-makers creative freedom over both discontinuous and continuous or seamless transitions.

It would be incorrect to assume that movie transitions are suitable for joining video clips in a
sparse, unstructured video collection of a place. For movies, the most significant goals of a transition
are to drive emotion and story, whereas the least significant goals are to maintain the two- and three-
dimensional space of action [Mur0O1, p. 18]. We consider it important to seamlessly maintain the sense
of orientation in the viewer when transitioning between video clips of a place by relating the two- and
three-dimensional space of action, else the viewer will become lost in the environment.

Cut transitions represent a change of context and are effective when visual displacement is great
[MurO1, p. 6], but rules for their use do not focus on maintaining the space of action [Mur0Ol,
p- 18][McCO07, p.101]. Dissolve transitions suggest a change of place or the passage of time [Dmy84,
ch. 13] and likewise do not intentionally maintain the space of action. Hidden cut transitions maintain
the space of action and disguise the change of clips in pans or zooms across featureless surfaces'. At
other times, movie-makers create seamless transitions by employing computer generated visual effects
to create physically implausible camera moves, such as simulating a camera moving through the lock in
a door [Fin02]. Recent advances in computer vision and mapping have required new photo transitions
not previously seen in movies [SSS06, SGSS08, GAF'10], and these can be adapted for video. Which
transitions are most suitable for video collections of places?

This chapter attempts to determine exactly that: the most suitable video transitions for exploring

sparse, unstructured video collections. First, we choose and justify a selection of movie and graphics-

I This is necessary to overcome technical or logistical problems such as seamlessly transitioning between a location and a sound

stage [Hit63], or in the past to achieve long takes when the length of film in a reel was a problem [Hit48].
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rendered video transitions to compare in an experiment (Section 6.2). Then, we explain the transition
implementations, show how the Videoscape graph enables their computation, and assess their possible
artefacts (Sections A and A.7). Videos are often captured with hand-held equipment, so we address how
video stabilization fits into our system (Section A.8). Next, we psychophysically assesses transitions
for participant preference. With these experiment results, we generate heuristics which suggest good

transitions and we move towards an automatic scene-dependent transition selection system (Section 6.3).

6.2 Experiment Design

We wish to study viewer preference between video transitions. Broadly, there are three variables which
affect this task: 1) perception and scene understanding; 2) all possible start and end video clips; and
3) all possible video transitions. In cinematic literature, different transitions have implied meaning, and
the possible interpretations of scene and camera movement are numerous. However, our goal is only to
maintain spatial awareness across transition between videos.

To restrict the problem to be within the scope of this work, we will sample from 2) and 3) and
pick example start and end clips representing scenes which commonly appear in our databases. We
will also pick a selection of transitions which span the language of film and the computer graphics
literature. Each transition type will be compared against every other, and this will occur across different
scenes. This approach should provide sufficient insight to generate rules which pick an appropriate
transition to join two videos. We must carefully balance the number of scenes and transitions, as well
as pick an appropriate methodology, so that the experiment can be completed in a reasonable amount of
time. For instance, with five second videos displaying ten scenes, and with seven transitions each in a
paired comparison, if we ignore repeatability and approximate five seconds for the participant to decide
preference, then the experiment would last approximately one hour; with ten transitions, the experiment
would last approximately two hours.

We consider three experiment methodologies: paired comparison, categorical judgement, and or-
dinal ranking. Paired comparison asks participants to repeatedly choose a preferred option from neigh-
bouring pairs (or to state that there is no preference between the pair). Paired comparison is the most
thorough and time-consuming of the three methodologies as (Z) explicit comparisons are required. Cat-
egorical judgement asks participants to provide ordinal numbers for each choice on a rating scale. This
approach is faster as each test case need only be observed once (rather than n — 1 times), but the cat-
egory choices may be unintuitive and do not force participants to directly compare test cases. Ordinal
ranking asks participants to directly rank entries while comparing all at once. This provides a simple in-
terface and is faster still than categorical judgement as participants need only decide whether a test case
is preferred over its neighbours. However, in enforcing a hierarchic order on test cases, ranking order
may introduce bias as participants are asked to distinguish between cases that may be equally preferred
[Gui54]. The accuracy of these three methods and the time required per participant for psychophysical
measurement is such that paired comparison > categorical judgement > ordinal ranking.

We wish to discover preference and to be able to both quantify by how much one transition is

preferred over another and to state whether this amount is significant. As preference is not intuitively
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quantifiable, we can transform the ordinal data produced by our three considered methods into a uniform
interval scale for preference. Multi-dimensional scaling [Tor58] can be applied to all methodologies.
This takes similarities from an n-by-n matrix of test cases and places each case into an /N-dimensional
space to quantify the differences. In our case, N is one, as we wish to place ranked scores into a
preference scale to assess whether the difference in preference between transitions is significant. If the
resulting scale difference is significant for certain scenes, for example scenes with significant camera
shake, then it is a strong indication that a transition is preferred under those conditions.

We choose to progress with an ordinal ranking experiment. Even though this raw ranking is not
as accurate as other methods, it is the fastest, which allows us to compare more scenes and transitions
in a set amount of time. This method also restricts a participant’s choice to label test cases as equally
preferred. However, the visual differences between our test cases should be noticeable as our transition
techniques produce quite different results with different types of artefacts (see Section A).

In a ranking experiment, there is a trade-off between video size in pixels and layout of the experi-
ment. The videos must be large enough to see scene detail and artefacts, but ideally the interface would
allow participants the freedom to rank how they wished. Our balance in the trade-off was that, for a
typical 1368x768 display [SS11], two 16:9 videos must fit vertically on the display. As each video has a
border, label and spacing which adds extra vertical pixels, the final video size was 640x360. Our source
videos and transition renderings filled a 1920x1080 frame, so a significant amount of detail was lost in
both the feature of the transition and the artefacts. For three videos of this size to be visible the display
would have to be tilted vertically. A display of all videos at this size would squeeze into a 2560x1600
display oriented vertically. However, we wish to use a Web-based interface to quickly and easily canvas
many participants, and so this is a much less practical approach as few people have such displays. Our

interface can be seen in Appendix C.

6.2.1 Transition Choice

In our experiment, we wish to include transitions commonly used in both movies and graphics-rendered
applications: any example, interactive or otherwise, in which media is digitally transitioned from one
image to another. From movies, we include cut and dissolve transitions. Cut transitions form a baseline
as a cut is the simplest way to join two clips. We include dissolve transitions, which commonly represent
the passage of time, as there are time differences between clips in our video collections. Other transitions,
such as wipes and reveals, are less common; we do not include them as they add nothing over a cut or
dissolve to help maintain the space of action.

Hidden cuts are carefully planne